Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Sex ratios of loggerhead sea turtles Caretta caretta during the juvenile pelagic stagePublication . Delgado, Cláudia; Canário, Adelino V. M.; Dellinger, ThomasSex ratios are a fundamental trait for species reproduction. In species with temperature-dependent sex determination (TSD), sex ratios are not necessarily even, which has important demographic consequences. We examined the sex ratio of juvenile pelagic stage loggerhead turtles Caretta caretta offshore Madeira Island, North Eastern Atlantic, using laparoscopy and histology. The overall sex ratio was 2:1 (F:M), significantly different from an even sex ratio. Although there was no apparent temporal variation, sex ratios among size classes were significantly different. The sex ratio of juveniles was compared with known sex ratios for the putative source rookery and found to be similar to the subadults’ sex ratio, but significantly less female-biased than the hatchlings sex ratio. This sug gests overestimation of hatchlings sex ratios and/or, less likely, differential mortality of females during the first months of life. Alternatively, the Madeira Island aggrega tion may be recruiting males from other geographical sources such as the Mediterranean and the Cape Verde.
- Compensatory growth in oceanic loggerhead sea turtles: response to a stochastic environmentPublication . Bjorndal, Karen A.; Bolten, Alan B.; Dellinger, Thomas; Delgado, Cláudia; Martins, Helen R.Compensatory growth (CG, accelerated growth that may occur when an organism that has grown at a reduced rate as a result of suboptimal environmental conditions is exposed to better conditions) is considered an adaptation to variable en vironments. Although documented thoroughly under captive conditions, CG has rarely been studied in wild populations. In their first years of life, oceanic-stage loggerhead sea turtles (Caretta caretta) have relatively little control over their geographic position or movements and thus have an extremely stochastic lifestyle with great variation in food availability and temperature. This environmental variation results in variable growth rates. We evaluate somatic growth functions of oceanic-stage loggerheads from the eastern Atlantic based on skeletochronology that allowed us to assign age and cohort to each individual. We demonstrate CG in these turtles based on three different analytical approaches: changes in coefficients of variation in size-at-age, generalized additive model regression analyses of somatic growth, and linear regression of age-specific growth rates. As a result of CG, variation in size-at-age in these juvenile loggerheads is substantially reduced. Thus, size is a better predictor of age than expected based on variation in growth rates. CG decreases with age, apparently as loggerheads gain greater control over their movements. In addition, we have evaluated for the first time in wild sea turtles the time-dependent nature of somatic growth by distinguishing among age, year, and cohort effects using a mixed longitudinal sampling design with assigned-age individuals. Age and year had significant effects on growth rates, but there was no significant cohort effect. Our results address critical gaps in knowledge of the demog raphy of this endangered species.
- Blood biochemistry reference values for wild juvenile loggerhead sea turtles (Caretta caretta) from Madeira archipelagoPublication . Delgado, Cláudia; Valente, Ana; Quaresma, Isabel; Costa, Margarida; Dellinger, ThomasStandard biochemical parameters were determined in wild juvenile loggerhead sea turtles Caretta caretta living offshore Madeira Island, northeast Atlantic. We analyzed the influence of age, sex, sea surface temperature, and body condition index on biochemical parameters including uric acid, total bilirubin, total cholesterol, creatinine kinase (CK), glucose, total protein, urea nitrogen, lactate dehydrogenase, aspartate aminotranspherase (AST), gamma-glutamyl transferase (GGT), albumin, alkaline phosphatase (ALP), sodium (NA), potassium (K), chloride, calcium, phosphorus, and magnesium. Significant positive correlations were found between turtle body size and total cholesterol, total protein, and albumin. Total protein and the enzymes AST and CK were lower than reported levels in adults. Calcium levels were lower than those reported in adult or captive turtles, but similar to wild juveniles from Australian waters, and were interpreted as normal for this age category. These data may be useful to evaluate the health status of stranded or injured animals and to improve veterinary care at rehabilitation centers.
- Helminth component community of the loggerhead sea Turtle,Caretta caretta from Madeira Archipelago, PortugalPublication . Valente, Ana Luisa; Delgado, Cláudia; Moreira, Cláudia; Ferreira, Sandra; Dellinger, Thomas; Carvalho, Miguel A. A. Pinheiro de; Costa, GraçaThe helminth fauna of pelagic-stage loggerhead sea turtles, Caretta caretta, is still poorly known. Here, we describe the helminth-component community of healthy, free-ranging juvenile loggerhead sea turtles captured in the waters around Madeira Island, Portugal. Fifty-seven were used in this study. The esophagus, stomach, intestine, liver, gallbladder, spleen, kidneys, trachea, bronchi, urinary bladder, heart, left and right aortas, and coelomic cavity were macroscopically inspected; organs and tissues were removed and washed through a sieve. A search for parasites was made using a stereoscopic microscope; recovered parasites were fixed and stored in 70% alcohol until staining and identification. Prevalence, mean intensity, and mean abundance values were recorded. In total, 156 parasite specimens belonging to 9 species were found: nematodes included Anisakis simplex s.l. (larvae) and an unidentified species; digenetic trematodes present were Enodiotrema megachondrus, Rhytidodes gelatinosus, Pyelosomum renicapite, and Calycodes anthos; acanthocephalans included Bolbosoma vasculosum and Rhadinorhynchus pristis; a single cestode, Nybelinia sp., was present. Parasite infections were found to have both low prevalences and intensities. Possible reasons for this include the oligotrophic conditions of the pelagic habitat around Madeira; a 'dilution effect' because of the vastness of the area; and the small size, and thus ingestion rate, of the turtles. Results are discussed in terms of the various turtle populations that may use the waters surrounding Madeira. This work provides valuable information on the parasite fauna of a poorly known stage in the life of loggerhead sea turtles, thereby filling a fundamental gap with regard to features of the parasite fauna in this species.