Loading...
8 results
Search Results
Now showing 1 - 8 of 8
- From a basic microalga and an Acetic Acid Bacterium cellulose producer to a living symbiotic biofilmPublication . Nóbrega, Vítor; Faria, Marisa; Quintana, Antera; Kaufmann, Manfred; Ferreira, Artur; Cordeiro, Nereida Maria AbanoBacterial cellulose (BC) has recently been the subject of a considerable amount of research, not only for its environmentally friendly biosynthesis, but also for its high potential in areas such as biomedicine or biomaterials. A symbiotic relationship between a photosynthetic microalga, Chlamydomonas debaryana, and a cellulose producer bacterium, Komagataeibacter saccharivorans, was established in order to obtain a viable and active biofilm. The effect of the growth media composition ratio on the produced living material was investigated, as well as the microalgae biomass quantity, temperature, and incubation time. The optimal temperature for higher symbiotic biofilm production was 30 °C with an incubation period of 14 days. The high microalgae presence, 0.75% w/v, and 60:40 HS:BG-11 medium (v/v) induced a biofilm microalgae incorporation rate of 85%. The obtained results report, for the first time, a successful symbiotic interaction developed in situ between an alkaline photosynthetic microalga and an acetic acid bacterium. These results are promising and open a new window to BC living biofilm applications in medical fields that have not yet been explored.
- Conductive bacterial cellulose-polyaniline blends: Influence of the matrix and synthesis conditionsPublication . Alonso, Emanuel; Faria, Marisa; Mohammadkazemi, Faranak; Resnik, Matic; Ferreira, Artur; Cordeiro, NereidaBacterial cellulose/polyaniline (BC/PANi) blends present a great potential for several applications. The current study evaluates the impact of using different BC matrixes (drained, freeze-dried and regenerated) and different synthesis conditions (in situ and ex situ) to improve the inherent properties of BC, which were monitored through FTIR-ATR, EDX, XRD, SEM, AFM, swelling, contact angle measurement and IGC. The employment of in situ polymerization onto drained BC presented the most conductive membrane (1.4 × 10-1 S/cm). The crystallinity, swelling capacity, surface energy and acid/base behavior of the BC membranes is substantially modified upon PANi incorporation, being dependent on the BC matrix used, being the freeze-dried BC blends the ones with highest crystallinity (up to 54%), swelling capacity (up to 414%) and surface energy (up to 75.0 mJ/m2). Hence, this work evidenced that the final properties of the BC/PANi blends are greatly influenced by both the BC matrixes and synthesis methods employed.
- Solving urban water microplastics with bacterial cellulose hydrogels: leveraging predictive computational modelsPublication . Mendonça, Ivana; Sousa, Jessica; Cunha, César; Faria, Marisa; Ferreira, Artur; Cordeiro, NereidaThe prevalence of microplastics (MPs) in both urban and aquatic ecosystems is concerning, with wastewater treatment plants being considered one of the major sources of the issue. As the focus on developing sustainable solutions increases, unused remnants from bacterial cellulose (BC) membranes were ground to form BC hydrogels as potential bioflocculants of MPs. The influence of operational parameters such as BC:MPs ratio, hydrogel grinding, immersion and mixing time, temperature, pH, ionic strength, and metal cations on MPs flocculation and dispersion were evaluated. A response surface methodology based on experimental data sets was computed to understand how these parameters influence the flocculation process. Further, both the BC hydrogel and the hetero-aggregation of MPs were characterised by UV–Vis, ATR-FTIR, IGC, water uptake assays, fluorescence, and scanning electron microscopy. These highlights that the BC hydrogel would be fully effective at hetero aggregating MPs in naturally-occurring concentrations, thereby not constituting a limiting performance factor for MPs’ optimal flocculation and aggregation. Even considering exceptionally high concentrations of MPs (2 g/ L) that far exceed naturally-occurring concentrations, the BC hydrogel was shown to have elevated MPs floc culation activity (reaching 88.6%: 1.77 g/L). The computation of bioflocculation activity showed high reliability in predicting flocculation performance, unveiling that the BC:MPs ratio and grinding times were the most critical variables modulating flocculation rates. Also, short exposure times (5 min) were sufficient to drive robust particle aggregation. The microporous nature of the hydrogel revealed by electron microscopy is the likely driver of strong MPs bioflocculant activity, far outperforming dispersive commercial bioflocculants like xanthan gum and alginate. This pilot study provides convincing evidence that even BC remainings can be used to produce highly potent and circular bioflocculators of MPs, with prospective application in the wastewater treatment industry
- Efficacy of bacterial cellulose hydrogel in microfiber removal from contaminated waters: A sustainable approach to wastewater treatmentPublication . Rodrigues, Filipa; Faria, Marisa; Mendonça, Ivana; Sousa, Edward; Ferreira, Artur; Cordeiro, NereidaMicrofibers (MFs), the dominant form of microplastics in ecosystems, pose a significant environmental risk due to the inadequacy of existing wastewater treatments to remove them. Recognising the need to develop sus tainable solutions to tackle this environmental challenge, this research aimed to find an eco-friendly solution to the pervasive problem of MFs contaminating water bodies. Unused remnants of bacterial cellulose (BC) were ground to form a hydrogel-form of bacterial cellulose (BCH) and used as a potential bioflocculant for poly acrylonitrile MFs. The flocculation efficiency was evaluated across various operational and environmental fac tors, employing response surface methodology computational modelling to elucidate and model their impact on the process. The results revealed that the BCH:MFs ratio and mixing intensity were key factors in flocculation efficiency, with BCH resilient across a range of environmental conditions, achieving a 93.6 % average removal rate. The BCH's strong retention of MFs released only 8.3 % of the MFs, after a 24-hour wash, and the flocculation tests in contaminated wastewater and chlorinated water yielded 89.3 % and 86.1 % efficiency, respectively. Therefore, BCH presents a viable, sustainable, and effective approach for removing MFs from MFs-contaminated water, exhibiting exceptional flocculation performance and adaptability. This pioneer study using BCH as a bioflocculant for MFs removal sets a new standard in sustainable wastewater treatment, catalysing research on fibrous pollutant mitigation for environmental protection.
- Bacterial cellulose biopolymers: the sustainable solution to water-polluting microplasticsPublication . Faria, Marisa; Cunha, César; Gomes, Madalena; Mendonça, Ivana; Kaufmann, Manfred; Ferreira, Artur; Cordeiro, NereidaMicroplastics (MPs) pollution has become one of our time’s most consequential issue. These micropolymeric particles are ubiquitously distributed across all natural and urban ecosystems. Current filtration systems in wastewater treatment plants (WWTPs) rely on non-biodegradable fossil-based polymeric filters whose mainte nance procedures are environmentally damaging and unsustainable. Following the need to develop sustainable filtration frameworks for MPs water removal, years of R&D lead to the conception of bacterial cellulose (BC) biopolymers. These bacterial-based naturally secreted polymers display unique features for biotechnological applications, such as straightforward production, large surface areas, nanoporous structures, biodegradability, and utilitarian circularity. Diligently, techniques such as flow cytometry, scanning electron microscopy and fluorescence microscopy were used to evaluate the feasibility and characterise the removal dynamics of highly concentrated MPs-polluted water by BC biopolymers. Results show that BC biopolymers display removal effi ciencies of MPs of up to 99%, maintaining high performance for several continuous cycles. The polymer’s characterisation showed that MPs were both adsorbed and incorporated in the 3D nanofibrillar network. The use of more economically- and logistics-favourable dried BC biopolymers preserves their physicochemical properties while maintaining high efficiency (93–96%). These polymers exhibited exceptional structural preservation, conserving a high water uptake capacity which drives microparticle retention. In sum, this study provides clear evidence that BC biopolymers are high performing, multifaceted and genuinely sustainable/circular alternatives to synthetic water treatment MPs-removal technologies.
- Influence of the matrix and polymerization methods on the synthesis of BC/PANi nanocomposites: an IGC studyPublication . Alonso, Emanuel; Faria, Marisa; Ferreira, Artur; Cordeiro, NereidaInverse gas chromatography (IGC) is a technique for evaluating surface properties. The current work emphasizes the use of IGC to evaluate the surface physicochemical changes during different bacterial cellulose (BC) processing methods as well as upon polyaniline (PANi) incorporation. The processing methods (oven-drying, freeze-drying, and regeneration) caused changes in the BC surface group distribution, where upon freeze-drying and regeneration, a more acidic behavior is obtained, compared to oven-drying (Kb/Ka decreased up to 24%). Through freeze-drying, the structural pore preservation increases (54%) the BC porosity, whereas through regeneration, the porosity decreases (23%), compared to BC oven-drying. Regarding the nanocomposites, with PANi incorporation, the overall properties evaluated by IGC were significantly changed. The γtotals increases up to 150%, indicating a more reactive surface in the nanocomposites. Also, is observed a sevenfold increase in the Kb/Ka and a less porous surface (up to 85%). Hence, the current work highlights the use of IGC as a viable technique to evaluate the physicochemical changes upon different BC modifications.
- Marine vs freshwater microalgae exopolymers as biosolutions to microplastics pollutionPublication . Cunha, César; Faria, Marisa; Nogueira, Natacha; Ferreira, Artur; Cordeiro, Nereida Maria AbanoMicroalgae can excrete exopolymer substances (EPS) with a potential to form hetero-aggregates with microplastic particles. In this work, two freshwater (Microcystis panniformis and Scenedesmus sp.) and two marine (Tetraselmis sp. and Gloeocapsa sp.) EPS producing microalgae were exposed to different microplastics. In this study, the influence of the microplastic particles type, size and density in the production of EPS and hetero-aggregates potential was studied. Most microalgae contaminated with microplastics displayed a cell abundance decrease (of up to 42%) in the cultures. The results showed that the formed aggregates were composed of microalgae and EPS (homo-aggregates) or a combination of microalgae, EPS and microplastics (hetero-aggregates). The hetero-aggregation was dependent on the size and yield production of EPS, which was species specific. Microcystis panniformis and Scenedesmus sp. exhibited small EPS, with a higher propension to disaggregate, and consequently lower capabilities to aggregate microplastics. Tetraselmis sp. displayed a higher ability to aggregate both low and high-density microplastics, being partially limited by the size of the microplastics. Gloeocapsa sp. had an outstanding EPS production and presented excellent microplastic aggregation capabilities (adhered onto the surface and also incorporated into the EPS). The results highlight the potential of microalgae to produce EPS and flocculate microplastics, contributing to their vertical transport and consequent deposition. Thus, this work shows the potential of microalgae as biocompatible solutions to water microplastics treatment.
- The effect of microplastics pollution in microalgal biomass production: a biochemical studyPublication . Cunha, César; Lopes, Joana; Paulo, Jorge; Faria, Marisa; Kaufmann, Manfred; Nogueira, Natacha; Ferreira, Artur; Cordeiro, NereidaMicroplastics (MPs) are widely spread throughout aquatic systems and water bodies. Given that water quality is one of the most important parameters in the microalgal-based industry, it is critical to assess the biochemical impact of short- and long-term exposure to MPs pollution. Here, the microalga Phaeodactylum tricornutum was exposed to water contaminated with 0.5 and 50 mg L-1 of polystyrene (PS) and/or polymethyl methacrylate (PMMA). Results show that the microalgal cultures exposed to lower concentrations of PS displayed a growth enhancement of up to 73% in the first stage (days 3-9) of the exponential growth phase. Surprisingly, and despite the fact that long-term exposure to MPs contamination did not impair microalgal growth, a steep decrease in biomass production (of up to 82%) was observed. The production of photosynthetic pigments was shown to be pH-correlated during the full growth cycle, but cell density-independent in later stages of culturing. The extracellular carbohydrates production exhibited a major decrease during long-term exposure. Still, the production of extracellular proteins was not affected by the presence of MPs. This pilot laboratory-scale study shows that the microalgal exposure to water contaminated with MPs disturbs its biochemical equilibrium in a time-dependent manner, decreasing biomass production. Thus, microalgal industry-related consequences derived from the use of MPs-contaminated water are a plausible possibility.