Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.13/2201
Registo completo
Campo DCValorIdioma
degois.publication.firstPage11521pt_PT
degois.publication.lastPage11546pt_PT
degois.publication.titleMultimedia Tools and Applicationspt_PT
dc.contributor.authorMuñoz, John Edison-
dc.contributor.authorGouveia, Elvio Rubio-
dc.contributor.authorCameirão, Mónica S.-
dc.contributor.authorBermúdez I Badia, Sergi-
dc.date.accessioned2018-12-13T15:39:22Z-
dc.date.available2018-12-13T15:39:22Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/10400.13/2201-
dc.description.abstractThe exponential increase of wearable health-tracking technologies offers new possibilities but also poses new challenges in signal processing to enable fitness monitoring through multimodal physiological recordings. Although there are several software tools used for postprocessing in physiological computing applications, limitations in the analysis, incorporating signals from multiple sources, integrating contextual information and providing information visualization tools prevent a widespread use of this technology. To address these issues, we introduce PhysioLab, a multimodal processing Matlab tool for the data analysis of Electromyography (EMG), Electrocardiography (ECG) and Electrodermal Activity (EDA). The software is intendedtofacilitatetheprocessingandcomprehensionofmultimodalphysiologicaldatawiththe aim of assessing fitness in several domains. A unique feature of PhysioLab is that is informed by normative data grouped by age and sex, allowing contextualization of data based on users’ demographics. Besides signal processing, PhysioLab includes a novel approach to multivariablept_PT
dc.language.isoengpt_PT
dc.publisherSpringer Verlagpt_PT
dc.relationPortugueseFoundationforScienceandTechnologythroughthe Augmented Human Assistance project (CMUPERI/HCI/0046/2013)pt_PT
dc.rightsrestrictedAccesspt_PT
dc.subjectCardiorespiratory fitness assessmentpt_PT
dc.subjectElderly populationpt_PT
dc.subject.pt_PT
dc.subjectFaculdade de Ciências Sociaispt_PT
dc.titlePhysioLab - a multivariate physiological computing toolbox for ECG, EMG and EDA signals: a case of study of cardiorespiratory fitness assessment in the elderly populationpt_PT
dc.typearticlept_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.peerreviewedyespt_PT
degois.publication.volume77(9)pt_PT
dc.identifier.doi10.1007/s11042-017-5069-zpt_PT
Aparece nas colecções:Artigos em revistas internacionais



FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.