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Abstract In this paper, we propose and axiomatically characterize residual
contractions, a new kind of contraction operators for belief bases. We establish
that the class of partial meet contractions is a strict subclass of the class of
residual contractions. We identify an extra condition that may be added to
the definition of residual contractions, which is such that the class of residual
contractions that satisfy it coincides with the class of partial meet contrac-
tions. We investigate the interrelations in the sense of (strict) inclusion among
the class of residual contractions and other classes of well known contraction
operators for belief bases.
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1 Introduction

The research area that studies the dynamics of knowledge is known as belief
change (also called belief revision or belief dynamics). One of the main goals
underlying this area is to model how a rational agent updates his/her set of
beliefs when confronted with new information. When facing new information
an agent can change his/her set of beliefs: he/she can acquire some new beliefs
and revise or give up some old ones. The main objective of most of the works
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in this area is to investigate and model how these changes occur. One of the
main contributions to the study of belief change is the so-called AGM model for
belief change—named after the initial of its authors: Alchourrón, Gärdenfors
and Makinson. This model was proposed in 1985 in [1] and gained the status
of standard model of belief change. In that framework, beliefs are represented
by sentences (of a propositional language L), the belief state of an agent is
modelled by a belief set—i.e. a logically closed set of (belief-representing)
sentences—, and epistemic inputs are represented by single sentences. The
AGM model considers three kinds of belief change operators, namely expan-
sion, contraction and revision. Expansion is the simplest of the AGM oper-
ators. An expansion occurs when new information is added to the set of the
beliefs of an agent. The expansion of a belief set K by a sentence α is the
logical closure of K∪ {α}. A contraction occurs when information is removed
from the set of beliefs of an agent. A revision occurs when new information is
added to the set of the beliefs of an agent while retaining consistency if the
new information is itself consistent. When performing a revision some beliefs
may be removed in order to ensure consistency. Contractions and revisions
can be defined one in terms of the other. Thus one of these operators can be
considered primitive and the other one derived. In [1] some properties were
proposed as being the characteristic properties of a contraction. These prop-
erties (which are recalled in Subsection 2.2) are commonly called the AGM
postulates for contraction and an operator that satisfies them is designated by
AGM contraction.

There are in the belief change literature several constructive methods for
defining operators which satisfy all or at least some of the AGM postulates for
contraction. Some of those models are the (transitively relational) partial meet
contractions [1], safe contraction [3,22], system of spheres-based contraction
[11] and epistemic entrenchment-based contraction [9,10].

Although the AGM model has quickly acquired the status of standard
model of theory change, several researchers (for an overview see [5]) have
pointed out its inadequateness in several contexts and proposed several ex-
tensions and generalizations to that framework. One criticism of the AGM
framework is that it uses logically closed sets (or belief sets) to model the
belief state of an agent. This can be considered undesirable for a number of
reasons. Firstly, belief sets are very large entities (eventually even infinite),
and its use is not adequate for computational implementations. The logical
closure of belief sets raises other issues not related to computational imple-
mentations. Rott pointed out in [21] that the AGM theory is unrealistic in its
assumption that epistemic agents are “ideally competent regarding matters of
logic. They should accept all the consequences of the beliefs they hold (that is,
their set of beliefs should be logically closed), and they should rigorously see to
it that their beliefs are consistent”. Furthermore, belief sets make no distinc-
tion between different inconsistent belief states. They also make no distinction
between basic beliefs and those that are inferred from them.

Several of the existing models of contraction for beliefs sets have been
adapted to the case when belief states are represented by belief bases: the par-
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tial meet contractions for belief bases were presented in [14,16,17]; the kernel
contractions—which can be seen as a generalization of safe contractions—were
introduced in [18]; the basic AGM-generated base contractions, a kind of con-
traction operators for belief bases defined by means of a contraction operator
for belief sets was proposed in [6] and, the ensconcement-based contractions
(of belief bases), which can be seen as adaptations to the case of belief bases
of the epistemic entrenchment-based contractions, were introduced in [23] and
axiomatically characterized in [4].

In this paper we propose and axiomatically characterize a new class of
belief base contraction operators, called residual contractions, which is a more
general class than that of the partial meet contractions. The definition of
these new operators relies on the notion of residuums, which is similar to that
of remainders—the basic constructs underlying the definition of partial meet
contractions—, but which treats sets with the same closure as equals. Indeed, a
strict subset of a remainder is not a remainder (and, consequently, is considered
not usable in the process of contraction) even if its closure is identical to the
closure of that remainder. On the other hand, given a residuum, any of its
subsets that has the same consequences as the whole is also a residuum.

The rest of the paper is organized as follows: In Section 2 we introduce
the notations and recall the main background concepts that will be needed
throughout this article. In particular we recall the definitions of the belief
change operators mentioned above and some of their axiomatic characteriza-
tions. In Section 3 we present the definition of residual contractions, obtain
an axiomatic characterization for those operators, and show that the class of
residual contractions strictly contains the class of partial meet contractions.
Afterwards, in Section 4, we show that the class of residual contractions that
are based on selection functions that satisfy a certain additional condition co-
incides with the class of partial meet contractions. Then, in Section 5 we study
the interrelations between the class of residual contractions and the classes of
other well known contraction operators for belief bases, namely (smooth) ker-
nel contractions and basic AGM-generated base contractions. More precisely,
we analyse whether each of those classes is or is not (strictly) contained in
each of the remaining ones. Finally, in Section 6 we summarize the main con-
tributions of the paper and briefly discuss their relevance. In the Appendix we
provide proofs for all the original results presented.

2 Background

2.1 Formal preliminaries

We will assume a propositional language L that contains the usual truth func-
tional connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction),→ (implica-
tion) and ↔ (equivalence). We shall make use of a consequence operation Cn
that takes sets of sentences to sets of sentences and which satisfies the standard
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Tarskian properties, namely inclusion, monotony and iteration. Furthermore
we will assume that Cn satisfies supraclassicality, compactness and deduction.
We will call Cn(A) the logical closure of A. We will sometimes use Cn(α) for
Cn({α}), A ` α for α ∈ Cn(A), ` α for α ∈ Cn(∅), A 6` α for α 6∈ Cn(A), 6` α
for α 6∈ Cn(∅). We will say that Cn is purely truth-functional when Cn is the
consequence operation such that, for any sentence α and any set of sentences
A, it holds that α ∈ Cn(A) if and only if α can be derived from A in the
framework of classical propositional logic. The letters α, β, . . . (except for γ
and σ) will be used to denote sentences of L. Lowercase Latin letters such as
p, q, . . . will be used to denote atomic sentences of L. A,B, . . . shall denote
sets of sentences of L. K is reserved to represent a set of sentences that is
closed under logical consequence (i.e. K = Cn(K)) — such a set is called a
belief set or theory. Given a set A we will denote the power set of A by P(A).
Given A ⊆ L, the expression “(contraction) operator (or function) on A” will
be used for designating a function − : L −→ P (L) and, in that context, we
shall represent by A− α the image of a sentence α by −.

2.2 AGM contractions

In this subsection we recall the AGM postulates for contraction and the con-
cept of AGM contraction.

Definition 1 ([1]) Let K be a belief set. An operator − on K is an AGM
contraction if and only if it satisfies the following conditions:

(K− 1) K− α = Cn(K− α). (Closure)
(K− 2) K− α ⊆ K. (Inclusion)
(K− 3) If α 6∈ K, then K− α = K. (Vacuity)
(K− 4) If α 6∈ Cn(∅), then α 6∈ K− α. (Success)
(K− 5) If α↔ β ∈ Cn(∅), then K− α = K− β. (Extensionality)
(K− 6) K ⊆ Cn((K− α) ∪ {α}). (Recovery)
(K− 7) (K− α) ∩ (K− β) ⊆ K− (α ∧ β). (Conjunctive overlap)
(K− 8) K− (α ∧ β) ⊆ K− α whenever α 6∈ K− (α ∧ β). (Conjunctive

inclusion)

These conditions, that are usually designated by AGM postulates for con-
traction. Postulates (K − 1)—(K − 6) are called basic AGM postulates for
contraction and an operator − that satisfies those properties is called a basic
AGM contraction. Postulates (K − 7) and (K − 8) are designated by supple-
mentary AGM postulates for contraction.

2.3 Belief base contraction

We now recall some postulates for base contraction and also several construc-
tive models of contraction functions on belief bases.
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2.3.1 Postulates for base contraction

The following are some well known postulates for belief base contraction:1

Success: If 6` α, then A− α 6` α.
Inclusion: A− α ⊆ A.
Failure: If ` α then A÷ α = A.
Vacuity: If A 6` α, then A ⊆ A÷ α.
Relative Closure: A ∩ Cn(A÷ α) ⊆ A÷ α.
Relevance: If β ∈ A and β 6∈ A ÷ α then there is some set A′ such that
A÷ α ⊆ A′ ⊆ A and α 6∈ Cn(A′) but α ∈ Cn(A′ ∪ {β}).
Core-retainment: If β ∈ A and β /∈ A ÷ α then there is some set A′ such
that A′ ⊆ A and α /∈ Cn(A′) but α ∈ Cn(A′ ∪ {β}).
Disjunctive elimination: If β ∈ A and β 6∈ A÷ α, then A÷ α 6` α ∨ β.
Extensionality: If ` α↔ β, then A÷ α = A÷ β.
Uniformity: If it holds for all subsets A′ of A that α ∈ Cn(A′) if and only if
β ∈ Cn(A′), then A÷ α = A÷ β.

Success [1] states that the outcome of a contraction by a non-tautological
sentence does not imply that sentence. Inclusion [1] states that the outcome of
a contraction is subset of the contracted set. Failure [7] states that contracting
by a tautology leaves the set to be contracted unchanged. Vacuity ensures that
nothing is removed when contracting a set by a sentence that is not a logical
consequence of that set. Relative closure [15] ensures that the original beliefs
that are implied by the outcome of the contraction are kept. This postulate
results of adapting the belief set contraction postulate of closure to the context
of belief base contractions. The relevance postulate [13,16] states that if a sen-
tence β is removed from A when contracting it by α, then β must contribute
to deduce α from A. Core-retainment [15] is a weaker version of relevance since
it does not require that A− α ⊆ A′. Disjunctive elimination was proposed in
[6] and states that if a sentence β is removed in the process of contracting A
by another sentence α then the disjunction of α and β is not deducible from
the outcome of that contraction. In the context of contractions of belief sets,
relevance, core-retainment and disjunctive elimination are equivalent to recov-
ery in the presence of the other basic AGM postulates for contraction [15,7,
6]. These three postulates as well as failure, vacuity and relative closure try to
formalize the minimal change criteria, according to which unnecessary loss of
information should be avoided. Extensionality states that the contraction of a
set by logical equivalent sentences produces the same output. This postulate
is a formalization of the irrelevance of syntax criteria, according to which the
outcome of a change should not depend on the syntax/representation used.
Uniformity, which was originally presented in [16], states that if α and β are
two sentences implied by exactly the same subsets of A, then the result of

1 For an overview of these postulates see [19,5].
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contracting A by α is identical to the outcome of contracting A by β.

The following observation presents some relations between the belief base
postulates for contraction mentioned above.

Observation 1 Let A be a belief base and ÷ an operator on A. Then:

(a) [19] If ÷ satisfies relevance, then it satisfies relative closure and core-
retainment.

(b) [19] If ÷ satisfies inclusion and core-retainment, then it satisfies failure
and vacuity.

(c) [19] If ÷ satisfies uniformity, then it satisfies extensionality.
(d) [6] If ÷ satisfies disjunctive elimination, then ÷ satisfies relative closure.

If ÷ also satisfies inclusion then it satisfies failure.
(e) [6] If ÷ satisfies relevance, then ÷ satisfies disjunctive elimination.

2.3.2 Partial meet contraction

In the rest of this section we recall some explicit definitions of contraction
functions as well as axiomatic characterizations for them. The first kind of
contraction operators that we will present are known as partial meet contrac-
tions and were originally presented in [1]. We start by recalling the concept
of remainder set, that is a set of maximal subsets (of a given set) that fail to
imply a given sentence. Formally:

Definition 2 ([2]) Let A be a belief base and α a sentence. The set A⊥α (A
remainder α) is the set of sets such that B ∈ A⊥α if and only if:

1. B ⊆ A.
2. B 6` α.
3. If B ⊂ B′ ⊆ A, then B′ ` α.

A⊥α is called remainder set of A by α and its elements are called remainders
(of A by α).

It follows from compacteness and Zorn’s lemma (cf. [2, Proof of Observation
2.2]) that, given a set of sentences A and a sentence α, every subset D of A
that does not imply α is contained in some remainder of A by α. This property
is known as upper bound property:

If D ⊆ A and D 6` α, then there is some D′ such that D ⊆ D′ ∈ A ⊥ α.

The partial meet contractions are obtained by intersecting some elements
of the (associated) remainder set. The choice of those elements is performed
by a selection function.

Definition 3 Given a set of sentences A and a set D such that D ⊆ P(P(A))
and ∅ ∈ D, a function γ : D −→ P(P(A)) is called a selection function (for
A) if and only if:
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1. γ(∅) = {A};
2. For all X ∈ D \ {∅}, ∅ 6= γ(X) ⊆ X.

We note that the definition of selection function proposed above is more
general than the one originally presented in [1]. The reason for presenting here
this more general definition is the fact that in this paper we will use not only
selection functions that receive remainder sets as arguments but also selection
functions that receive other kinds of sets of sets of sentences.

Definition 4 ([1,14]) The partial meet contraction operator on A based on
a selection function γ : {A ⊥ ε : ε ∈ L} −→ P(P(A)) is the operator ÷γ such
that for all sentences α:

A÷γ α = ∩γ(A⊥α).

An operator ÷ for a set A is a partial meet contraction if and only if there is
a selection function γ for A such that A÷ α = A÷γ α for all sentences α.

Hansson characterized partial meet contractions defined on belief bases in
terms of postulates:

Observation 2 ([14]) Let A be a belief base. An operator ÷ on A is a partial
meet contraction function for A if and only if ÷ satisfies success, inclusion,
uniformity and relevance.

2.3.3 Kernel contraction

As we mentioned previously the partial meet contraction operators of a given
set by a sentence α are based on a selection among the maximal subsets of that
set that fail to imply α. Another different proposal consists of constructing a
contraction operator based on a selection of elements of A that are fundamental
in some deduction of α and then discarding them when contracting A by α.
Following this approach, Hansson, in [18], introduced the kernel contraction
operators, which can be seen as a generalization of the safe contraction defined
by Alchourrón and Makinson in [3].2

Definition 5 ([18]) Let A be a set of sentences and α be a sentence. Then
A⊥⊥α is the set such that B ∈ A⊥⊥α if and only if:

1. B ⊆ A.
2. B ` α.
3. If B′ ⊂ B then B′ 6` α.

A⊥⊥α is called the kernel set of A with respect to α and its elements are
the α-kernels of A.

When contracting a belief α from a set A we must give up sentences of
each α-kernel, otherwise α would continue being implied by the outcome of
the contraction. The so-called incision functions [18] select the beliefs to be
discarded.

2 For a deep study of safe contraction functions see [22].
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Definition 6 ([18]) Let A be a set of sentences. Let A⊥⊥α be the kernel set
of A with respect to α. An incision function σ for A is a function such that
for all sentences α:

1. σ(A⊥⊥α) ⊆
⋃

(A⊥⊥α).
2. If ∅ 6= B ∈ A⊥⊥α, then B ∩ σ(A⊥⊥α) 6= ∅.

Definition 7 ([18]) Let A be a set of sentences and σ an incision function
for A. The kernel contraction on A based on σ is the operator ÷σ such that
for all sentences α:

A÷σ α = A \ σ(A⊥⊥α).

An operator ÷ for a set A is a kernel contraction if and only if there is an
incision function σ for A such that A÷ α = A÷σ α for all sentences α.

Hansson presented in [18] an axiomatic characterization for kernel contrac-
tions defined on belief bases.

Observation 3 ([18]) Let A be a belief base. An operator ÷ on A is a kernel
contraction if and only if it satisfies success, inclusion, uniformity and core-
retainment.

Sometimes, when contracting a set by means of a kernel contraction, some
beliefs are removed without any apparent reason. For example if β ∈ A and
β ∈ Cn(A ÷ α), then it is natural to expect that β is also in A ÷ α, i.e. it is
reasonable to require that an operator of kernel contraction satisfies relative
closure. For this reason, Hansson proposed in [18] a more conservative type
of kernel contractions, that he designated by smooth kernel contractions. A
smooth kernel contraction is a kernel contraction that is based on an incision
function that satisfies the condition expressed in the following definition.

Definition 8 ([18]) An incision function σ for a set A is smooth if and only
if it holds for all subsets A′ of A that if A′ ` β and β ∈ σ(A⊥⊥α) then
A′ ∩ σ(A⊥⊥α) 6= ∅.
A kernel contraction is smooth if and only if it is based on a smooth incision
function.

The following observation presents an axiomatic characterization for smooth
kernel contractions.

Observation 4 ([18]) Let A be a belief base. An operator ÷ on A is a smooth
kernel contraction if and only if it satisfies success, inclusion, uniformity, core-
retainment and relative closure.

2.3.4 Basic AGM-generated base contraction

We now recall the definition of another kind of base contraction functions as
well as an axiomatic characterization for them.
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Definition 9 ([6]) Let A be a belief base. An operator ÷ for A is a basic
AGM-generated base contraction3 if and only if, for all α ∈ L:

A÷ α = (Cn(A)− α) ∩A

where − is a basic AGM contraction (i.e. an operator that satisfies the basic
AGM postulates for contraction) on Cn(A).

Observation 5 ([6]) Let A be a belief base. An operator ÷ on A is a basic
AGM-generated base contraction if and only if it satisfies success, inclusion,
vacuity, extensionality and disjunctive elimination.

In the following observation we expose some interrelations among the dif-
ferent classes of contractions previously mentioned. These interrelations follow
trivially from the axiomatic characterizations presented in Observations 2, 3, 4
and 5 and the interrelations among postulates that we recalled in Observation
1.

Observation 6 Let A be a belief base and ÷ be a contraction operator on A.
Then:

(a) If ÷ is an operator of partial meet contraction, then it is an operator of
smooth kernel contraction.

(b) If ÷ is an operator of smooth kernel contraction, then it is an operator of
kernel contraction.

(c) If ÷ is an operator of partial meet contraction, then it is an operator of
basic AGM-generated base contraction.

We note that, in general, the converse of the statements presented in the
previous observation do not hold. To see this, it is enough to consider the
counter-examples presented in [8, Section 6.4]. The counter-examples there
presented allow us to conclude also the facts stated in the following observa-
tion.

Observation 7 Let A be a belief base and ÷ be a contraction operator on A.
Then:

(a) There are operators of basic AGM-generated base contractions that are not
kernel base contractions (nor smooth kernel contractions).

(b) There are operators of (smooth) kernel base contractions that are not basic
AGM-generated base contractions.

3 Residual Contractions

In this section we will present the definition and axiomatic characterization
of a new type of contraction operators on belief bases, called residual contrac-
tions. We start by introducing the concept of residuum which will be the basic

3 In [6] these operators were designated by basic related-AGM base contractions.
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construct underlying the definition of residual contractions. Given a set A and
a sentence α a residuum of A by α is a subset B of A that does not imply α
and whose logical closure, Cn(B), is maximal in the sense that any subset of
A whose logical closure strictly contains the logical closure of B, implies α.

Definition 10 Let A be a belief base and α a sentence. The set A o α (A
residuum α) is the set of sets such that B ∈ A oα if and only if:

1. B ⊆ A.
2. B 6` α.
3. For all sets B′ ⊆ A if Cn(B) ⊂ Cn(B′), then B′ ` α.

A o α is called residuum set of A by α and its elements are called residuums
(of A by α).

It follows immediately from the definition of A residuum α that if ` α,
then A oα = ∅. It follows also that if A 6` α, then A ∈ A oα. However, it is not
always the case that if A 6` α, then A oα = {A}. For example, if A = {p, p∨q},
then A o q = {{p}, A}.

The following example clarifies the concept of residuum.

Example 1 Let A = {p, q, p∨q} and Cn be purely truth-functional. Hence A ⊥
(p∧q) = {{p, p∨q}, {q, p∨q}} and A o (p∧q) = {{p}, {p, p∨q}, {q}, {q, p∨q}}.

The previous example shows that not all residuums are remainders. How-
ever, the following observation highlights that the converse is true.

Observation 8 If X ∈ A ⊥ α, then X ∈ A oα.

The following property, that will be designated by residuum upper bound
property, follows immediately from the upper bound property and Observa-
tion 8.

If X ⊆ A and X 6` α, then there is some X ′ such that X ⊆ X ′ ∈ A oα.

In the following two observations we present some relations between re-
mainders and residuums.

Observation 9 If Y ∈ A oα, then there is some X ∈ A ⊥ α such that Y ⊆ X
and Cn(X) = Cn(Y ).

Observation 10 If X ∈ A ⊥ α and Y ⊆ X is such that Cn(X) = Cn(Y ),
then Y ∈ A oα.

In the following observation we present a result that will be useful in the
proof of the representation theorem that we shall present further ahead.

Observation 11 The following conditions are equivalent:

1. A oα = A o β;
2. For all subsets B of A: B ` α if and only if B ` β.



Residual Contraction 11

The following observation exposes that if X ∈ A o α, then all subsets of
Cn(X) ∩A which contain X are elements of the residuum set of A by α.

Observation 12 Let X ∈ A oα. If X ⊆ Y ⊆ Cn(X) ∩A, then Y ∈ A oα.

We are now in conditions to present the definition of residual contractions.
If A 6` α, then contracting A by α through a residual contraction leaves the set
to be contracted unchanged. Otherwise, the result of the contraction consists
of the intersection of a selection among residuums.

Definition 11 The residual contraction on A based on a selection function
γ : {A o ε : ε ∈ L} −→ P(P(A)) is the operator ÷γ such that for all sentences
α:
(1) if A ` α, then A÷γ α =

⋂
γ(A oα) and

(2) if A 6` α, then A÷γ α = A.
An operator ÷ for a set A is a residual contraction if and only if there is a
selection function γ for A such that A÷ α = A÷γ α for all sentences α.

At this point we remark that the main difference between residual con-
tractions and partial meet contractions is the fact that the former are defined
by means of selection of residuums and the latter make use of a selection of
remainders. However, on a more technical note, we must mention that while
partial meet contractions can be simply defined by A ÷ α =

⋂
γ(A⊥α) (cf.

Definition 4), this is not the case in what concerns the definition of residual
contractions. In fact, the following example clarifies the necessity of condition
(2) in the above definition.4

Example 2 Let A = {p, p∨q} and Cn be purely truth-functional. Then A o q =
{{p, p∨ q}, {p}}. Note that if condition (2) were not included in Definition 11,
then a possible outcome of contracting A by q through a residual contraction
would be {p}. If this were the case, then the residual contractions would not
satisfy the vacuity postulate.

In the following theorem we present an axiomatic characterization for resid-
ual contractions.

Theorem 1 Let A be a belief base. An operator ÷ on A is a residual contrac-
tion function for A if and only if ÷ satisfies success, inclusion, uniformity,
vacuity, failure and
Weak relevance: If β ∈ A \ A÷ α, then there exists X ⊆ A \ {β} such that
A÷ α ⊆ X and X 6` α but for any Y ⊆ A such that Cn(X) ⊂ Cn(Y ) it holds
that Y ` α.

4 We should note here also that, in [12, p.38], the following alternative definition for partial
meet contraction (equivalent to Definition 4) was proposed:

1. If 6` α, then A÷γ α =
⋂
γ(A⊥α) and

2. If ` α, then A÷γ α = A,

where γ is a function such that γ(A⊥α) ⊆ A⊥α, and if A⊥α 6= ∅ then γ(A⊥α) 6= ∅.
This alternative definition is similar to the above definition of residual contraction, in the
sense that for certain sentences (namely, for tautologies) the outcome of the contraction is
defined explicitly (by A) without making use of the selection function γ.
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Making use of the concept of residuum, the postulate of weak relevance
included in the above representation theorem expresses that for every sentence
β that is given up in the process of contracting A by α, there exists a residuum
of A by α that contains the outcome of that contraction and does not contain
β.

The following observation exposes that (as suggested by its designation) the
postulate of weak relevance is implied by the (stronger) postulate of relevance.

Observation 13 Let A be a belief base and ÷ an operator on A. If ÷ satisfies
relevance, then it satisfies weak relevance.

Having in mind the axiomatic characterizations presented for partial meet
and residual contractions (in Observation 2 and Theorem 1, respectively) and
Observations 1 and 13 we may conclude that any partial meet contraction is
a residual contraction. On the other hand, the following example allows us to
conclude that not every residual contraction is a partial meet contraction.

Example 3 Let A and Cn be as stated in Example 1. It follows that if − is a
partial meet contraction on A, then the outcome of A − (p ∧ q) must be one
of the following sets: {p, p ∨ q}, {q, p ∨ q} or {p ∨ q}. On the other hand, a
possible outcome of contracting A by p ∧ q through a residual contraction is
{p}. Therefore not every residual contraction is a partial meet contraction.

In the following corollary we state formally the above discussed interrela-
tion among residual contractions and partial meet contractions.

Corollary 1 The class of partial meet contractions is a strict subclass of the
class of residual contractions (i.e., if an operator is a partial meet contraction,
then it is also a residual contraction, but the converse does not always hold).

4 From residual to partial meet contractions

As shown above, partial meet contraction are residual contractions but, in gen-
eral, the converse does not hold. However, we will show in this section that if
an additional requirement is imposed to the selection function on which resid-
ual contractions are based on, the class of residual contractions thus obtained
coincides with the class of partial meet contractions.

We already established that A ⊥ α ⊆ A oα but, in general, A oα 6⊆ A ⊥ α.
The following observation illustrates that the set of maximal elements of A oα
(in terms of set inclusion) coincides with A ⊥ α.

Observation 14 Let A be a belief base. Then:

A ⊥ α = {X ∈ A oα : there is no Y ∈ A oα such that X ⊂ Y }.
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Having the above observation in mind it is natural to expect that residual
contractions that are based on selection functions that select only maximal
residuums are partial meet contractions.

A selection function will be designated by maximal, if it selects only max-
imal (in terms of set inclusion) residuums, and residual contractions that are
based on maximal selection functions will be called maximal residual contrac-
tions.

Definition 26 A selection function γ for a set A is maximal if and only if the
following condition holds:

If X ∈ γ(S), then there is no Y ∈ S such that X ⊂ Y.

An operator of residual contraction is maximal if and only if it is based on a
maximal selection function.

The following observation states that an operator ÷ is a maximal residual
contraction operator if and only it is a partial meet contraction operator.

Theorem 2 Let A be a belief base. An operator on A is a maximal residual
contraction if and only if it is a partial meet contraction.

It follows from the above result that partial meet contractions can be seen
as residual contractions that are generated by selection functions which satisfy
a certain (additional) condition, which ensures more conservative outcomes.
We note that this relation between partial meet contractions and residual
contractions is similar to the relation between smooth kernel contractions and
(general) kernel contractions. Hence, in this sense, we may say that residual
contractions are to partial meet contractions as kernel contractions are to
smooth kernel contractions.5

5 Maps between classes of base contraction functions

In this section we study the interrelations among the classes of base contrac-
tion operators mentioned along this paper. We have shown above that partial
meet contractions are residual contractions, but that the converse does not
hold. We also showed that the classes of partial meet contractions and of max-
imal residual contractions coincide. Furthermore, at the end of Section 2.3 we
saw the existing relations in terms of set inclusion between the classes men-
tioned in that section. We will now investigate if there is any set inclusion
relation between the classes of residual contractions and (smooth) kernel and
basic AGM-generated base contraction.

Now we revisit Example 1 this time to illustrate that, in general, residual
contractions are not (smooth) kernel contractions.

5 We are thankful to the reviewer who pointed out this interesting similarity.
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Example 4 Let A = {p, q, p ∨ q} and Cn be purely truth-functional. Hence
A⊥⊥(p ∧ q) = {{p, q}}. Therefore if ÷ is a (smooth) kernel contraction then
the possible outcomes of A ÷ (p ∧ q) are {p, p ∨ q}, {q, p ∨ q} or {p ∨ q}. On
the other hand A o (p ∧ q) = {{p}, {p, p ∨ q}, {q}, {q, p ∨ q}}. Thus {p} is a
possible outcome of contracting A by p∧ q by means of a residual contraction.
Therefore not every residual contraction is a (smooth) kernel contraction.

The following example illustrates that, in general, (smooth) kernel contrac-
tions are not residual contractions.

Example 5 Let A = {p, q, p ∨ q, p → q} and Cn be purely truth-functional.
Hence A⊥⊥q = {{q}, {p, p→ q}, {p∨ q, p→ q}}. Therefore a possible outcome
of contracting A by q by means of a (smooth) kernel contraction is {p∨q}. On
the other hand A o q = {{p}, {p, p∨q}, {p→ q}}. Thus {p∨q} is not a possible
outcome of contracting A by q by means of a residual contraction. Therefore
not every (smooth) kernel contraction is a residual contraction.

The following example illustrates that the classes of basic AGM-generated
base contractions and of residual contractions are not related by means of set
inclusion.

Example 6 Consider a language that consists of p and q, and their truth-
functional combinations. LetA = {p, q, p∨q} and Cn be purely truth-functional.
Hence Cn(A) = Cn({p, q}). It holds that Cn(A) ⊥ p = {Cn(q), Cn(p ↔ q)}.
If ÷ is a partial meet contraction on Cn(A) then the possible outcomes of
Cn(A)÷p are: Cn(q), Cn(p↔ q) or Cn(¬p∨q). Every partial meet contraction
on belief sets is a basic AGM contraction ([1]). Therefore the possible outcomes
of contracting A by p by means of a basic AGM-generated base contraction
are: {q, p ∨ q} or ∅. On the other hand A o p = {{q}, {q, p ∨ q}}. Therefore the
possible outcomes of performing a contraction of A by p through a residual
contraction are {q} or {q, p ∨ q}. Therefore not every basic AGM-generated
base contraction is a residual contraction nor every residual contraction is a
basic AGM-generated base contraction.

In Figure 1 we present a diagram that summarizes the logical relationships
between the operators of base contraction mentioned along this paper. The re-
lationships in terms of set inclusion among the classes of operators represented
in this diagram are exactly those indicated by arrows (and their transitive clo-
sure).

6 Conclusion and Discussion

We have proposed a new operator of belief base change which generalizes the
partial meet contractions. While partial meet contractions are essentially de-
fined as an intersection of some remainders—maximal subsets of the original
belief base which do not imply the sentence to be removed—, a residual con-
traction is obtained as an intersection of some more general constructs, namely
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Maximal residual
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Basic AGM-generated
base contraction

Smooth kernel
contraction

Kernel
contraction

Residual
contraction

Fig. 1 Logical relationships between different operations of base contraction.

residuums, which are subsets of the original belief base A that do not imply
the sentence to be removed and whose closure is maximal among the closures
of the subsets of A with that property.

By using residuums, any two subsets of A which have the same conse-
quences are treated equally in the sense that one of them can be (used in the
process of obtaining) the result for the operation of contraction if and only if
the other one has that same potential. This is not the case when considering
remainders, since a set with exactly the same closure of a certain remainder
may (itself) not be a remainder. Indeed, for instance, in the scenario described
in Example 3, A = {p, q, p ∨ q} and the possible outcomes of a residual con-
traction of A by p ∧ q are {p}, {q}, {p, p ∨ q}, {q, p ∨ q}, and {p ∨ q}. On the
other hand, only the latter three sets are possible outcomes of a partial meet
contraction of A by p ∧ q. Hence, in that situation, for example, the sets {p}
and {p, p∨q} are not given the same importance in the context of partial meet
contraction (despite the fact that those two set have exactly the same logical
closure).

In [20], Levi argues that “measures of informational value ought to be care-
fully distinguished from measures of information”. In the mentioned reference
Levi defends that in a belief change process it is the loss of informational value
that should be minimized rather than the loss of information. Levi’s point is
that not all information is valuable for the agent and, therefore, some pieces
of information can be given up when moving from one belief state to another.

For the above presented discussion we may say that residual contractions
address Levi’s recommendations in the sense that these operators are more
sensible to the informational value than to the information and, furthermore
capture the notion of informational value better than partial meet contractions
do. Indeed, for example the sets {p} and {p, p ∨ q} can be seen as having the
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same informational value, although the information p ∨ q is only (explicitly)
contained in the latter of them. Therefore, the fact that these two sets can be
possible outcomes of one same residual contraction operation (as it is the case
in the example mentioned in the second paragraph above), asserts that in a
process of residual contraction it is possible to give up an (explicit) information
without loosing informational value.

We have additionally shown that the class of residual contractions is dif-
ferent from all the main classes of belief base contraction operators so far
presented in the literature.
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Appendix: Proofs

Lemma 1 [19] If A ⊆ B ⊆ Cn(A), then Cn(A) = Cn(B).

Lemma 2 ([2, Observation 2.2]) Let A be a set of sentences and α a sen-
tence. Then, A ⊥ α = ∅ if and only if ` α (provided that the consequence
operation Cn is compact).

Lemma 3 ([19, Observation 1.39])
Let A be a set of sentences and α and β be sentences. Then the two following

conditions are equivalent:

1. A ⊥ α = A ⊥ β;
2. For all subsets D of A: D ` α if and only if D ` β.

Lemma 4 Let A be a belief base. A ⊥ α = ∅ if and only if A oα = ∅.

Proof (Right to left) Follows trivially by Observation 8.6

(Left to right) Let A ⊥ α = ∅. Hence, by Lemma 2, ` α, from which it follows
that A oα = ∅.

Proof (Proof of Observation 8) Let X ∈ A ⊥ α. Hence X ⊆ A and X 6` α. Let
X ′ ⊆ A be such that Cn(X) ⊂ Cn(X ′). We intend to prove that X ′ ` α. From
Cn(X) ⊂ Cn(X ′) it follows that there exists δ ∈ X ′ \X. Let Y = Cn(X ′)∩A.
It holds that X ⊂ X ∪ {δ} ⊆ Y ⊆ A. Thus X ⊂ Y ⊆ A. Therefore Y ` α
(since X ∈ A ⊥ α). It holds that Y ⊆ Cn(X ′). Hence X ′ ` α.

6 This proof uses Observation 8 whose proof is presented immediately after this lemma.
However, this is not an issue because the result that is proven here is not used in the proof
of that observation.
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Proof (Proof of Observation 9) Let Y ∈ A oα. Hence Y ⊆ A and Y 6` α. By the
upper bound property it follows that there exists X such that Y ⊆ X ∈ A ⊥ α.
From Y ⊆ X it follows, by monotony of Cn, that Cn(Y ) ⊆ Cn(X). It holds
that X 6` α and X ⊆ A (since X ∈ A ⊥ α). Hence Cn(Y ) ⊂ Cn(X) does not
hold since Y ∈ A oα. Therefore Cn(Y ) = Cn(X).

Proof (Proof of Observation 10) Let X ∈ A ⊥ α and Y ⊆ X be such that
Cn(X) = Cn(Y ). From X ∈ A ⊥ α it holds that X 6` α and X ⊆ A.
Hence Y 6` α and Y ⊆ A. It remains to show that Y satisfies condition (3)
of Definition 10. Let Z ⊆ A be such that Cn(Y ) ⊂ Cn(Z). Hence Cn(X) ⊂
Cn(Z). Therefore there exists δ ∈ Z \X. Let W = Cn(Z)∩A. Hence X ⊂W .
Therefore W ` α (since X ∈ A ⊥ α). Thus Cn(Z) ` α. Thus, by iteration of
Cn, Z ` α.

Proof (Proof of Observation 11) (2) implies (1): Let X ∈ A o α. It follows
immediately from Definition 10 and (2) that X ∈ A oβ.
(1) implies (2): Suppose that (2) does not hold. Assume, without loss of gen-
erality, that there is some subset X of A such that X 6` α and X ` β. By the
residuum upper bound property it follows that there is some set X ′ such that
X ⊆ X ′ ∈ A o α. On the other hand, from X ⊆ X ′ it follows that X ′ ` β.
Hence X ′ 6∈ A oβ. This contradicts (1).

Proof (Proof of Observation 12) Let X ∈ A oα and Y be such that X ⊆ Y ⊆
Cn(X) ∩ A. Hence Y ⊆ A and X ⊆ Y ⊆ Cn(X). It follows from Lemma
1, that Cn(X) = Cn(Y ). Therefore, Y 6` α and for any subset Z of A if
Cn(Y ) ⊂ Cn(Z), then Z ` α. Therefore Y ∈ A oα.

Proof (Proof of Theorem 1) (Construction to postulates)
Let A be a belief base and ÷ be a residual contraction operator on A. Hence
there is a selection function γ for A such that for all sentences α:

1. if A ` α, then A÷ α =
⋂
γ(A oα) and

2. if A 6` α, then A÷ α = A.

We will show that ÷ satisfies success, inclusion, uniformity, vacuity, failure
and weak relevance.
Success: Let 6` α. Hence, according to Lemmas 2 and 4, A oα 6= ∅. Therefore,
by definition of a selection function, γ(A oα) is a non-empty subset of A oα. If
A 6` α, then A÷α = A, therefore A÷α 6` α. If A ` α, then A÷α =

⋂
γ(A oα),

therefore A÷ α 6` α (since it holds, for any element X of A oα, that X 6` α).
Inclusion: Let α ∈ L. It follows trivially by the definition of ÷, if A 6` α.
Assume now that A ` α. We will consider two cases:
Case 1) ` α. Hence, according to Lemmas 2 and 4, A o α = ∅. Therefore,
γ(A oα) = {A}. Hence A÷ α = A.
Case 2) 6` α. Hence, according to Lemmas 2 and 4, A oα 6= ∅. Thus γ(A oα) is
a non-empty subset of A oα. Any element of A oα is a subset of A, hence any
element of γ(A oα) is also a subset of A. Therefore, A÷ α =

⋂
γ(A oα) ⊆ A.

Uniformity: Let α, β be two sentences such that it holds for all subsets A′ of
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A that α ∈ Cn(A′) if and only if β ∈ Cn(A′). It follows from Observation 11
that A oα = A oβ. Thus,

⋂
γ(A oα) =

⋂
γ(A oβ). We will consider two cases:

Case 1) A 6` α. Hence, by hypothesis, A 6` β. Therefore, A÷ α = A = A÷ β.
Case 2) A ` α. Hence, by hypothesis, A ` β. Therefore, A÷ α =

⋂
γ(A oα) =⋂

γ(A oβ) = A÷ β.
Vacuity: Follows trivially by the definition of ÷.
Failure: Let ` α. Hence, according to Lemmas 2 and 4, A oα = ∅. Therefore
γ(A oα) = {A}. Thus A÷ α =

⋂
(γ(A oα)) = A.

Weak relevance: Let β be such that β ∈ A \ A÷ α. Therefore, A÷ α 6= A.
Hence it holds that A ` α and consequently that A ÷ α =

⋂
γ(A o α). It also

holds that A oα 6= ∅. From β 6∈ A÷α, it follows that there exists X ∈ γ(A oα)
such that β 6∈ X. Therefore A ÷ α ⊆ X. On the other hand, X ⊆ A (since
X ∈ A o α) and, since β 6∈ X, it follows that X ⊆ A \ {β}. Furthermore,
from X ∈ A o α it follows that X 6` α and for any subset Y of A such that
Cn(X) ⊂ Cn(Y ) it holds that Y ` α.

(Postulates to construction)
Let ÷ be an operator on A that satisfies success, inclusion, uniformity, vacuity,
failure and weak relevance. Let γ be such that:

(i) γ(∅) = {A};
(ii) If A oα 6= ∅, then γ(A oα) = {X ∈ A oα : A÷ α ⊆ X}.

We need to show that: (1) γ is a (well-defined) function; (2) γ is a selection
function; (3) for all α
(3.1) if A ` α, then A÷ α =

⋂
γ(A oα) and

(3.2) if A 6` α, then A÷ α = A.
(1) We must prove that for all α, β if A oα = A oβ then γ(A oα) = γ(A oβ).
Suppose that A o α = A o β. It follows trivially if A o α = ∅. Assume now that
A o α 6= ∅. By Observation 11 it follows that for all subsets B of A: B ` α if
and only if B ` β. Hence, uniformity yields that A ÷ α = A ÷ β. Hence, by
definition of γ, it holds that γ(A oα) = γ(A oβ).
(2) By definition γ(∅) = {A}. Hence, in order to prove that γ is a selection
function it is sufficient to show that if A o α 6= ∅, then ∅ 6= γ(A o α) ⊆ A o α.
That γ(A o α) ⊆ A o α follows trivially by the definition of γ. It remains to
prove that γ(A oα) 6= ∅. Since A oα 6= ∅ it must be the case that 6` α. Thus by
success, A ÷ α 6` α. It follows by inclusion that A ÷ α ⊆ A. By the residuum
upper bound property there is some X such that A÷α ⊆ X ∈ A oα. Therefore,
according to the definition of γ, X ∈ γ(A oα). Thus γ(A oα) 6= ∅.
(3) Let α be an arbitrary sentence. We will prove that (3.1) and (3.2) hold.
(3.1) A ` α. We will consider two cases:
Case 1: ` α. Thus A oα = ∅. By definition of γ it follows that γ(A oα) = {A}.
Hence

⋂
γ(A o α) = A. On the other hand, by failure A ÷ α = A. Therefore⋂

γ(A oα) = A÷ α.
Case 2: 6` α. Thus A oα 6= ∅. Therefore, as shown in (2), γ(A oα) 6= ∅. It follows
from the definition of γ that A ÷ α is a subset of every element of γ(A o α).
Thus A ÷ α ⊆

⋂
γ(A o α). It remains to show that

⋂
γ(A o α) ⊆ A ÷ α. Let
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β 6∈ A÷α. We will show that β 6∈
⋂
γ(A oα). This is obvious if β 6∈ A. Assume

now that β ∈ A. Hence β ∈ A \A÷ α. It follows by weak relevance that there
exists X ⊆ A \ {β} such that A ÷ α ⊆ X and X 6` α but for all Y ⊆ A
such that Cn(X) ⊂ Cn(Y ) it holds that Y ` α. Hence A ÷ α ⊆ X ∈ A o α.
Therefore, by definition of γ, it holds that X ∈ γ(A oα). From β 6∈ X it follows
that β 6∈

⋂
γ(A oα).

(3.2) A 6` α. Then by vacuity and inclusion it follows that A÷ α = A.

Proof (Proof of Observation 13) A be a belief base and ÷ an operator on A
that satisfies relevance. Let β ∈ A\A÷α. By relevance there exists X such that
A÷ α ⊆ X ⊆ A, X 6` α but X ∪ {β} ` α. By the upper bound property there
exists X ⊆ X ′ such that X ′ ∈ A ⊥ α. It must hold that β 6∈ X ′ (otherwise it
would follow that X ′ ` α). On the other hand, by Observation 8, X ′ ∈ A oα.
Therefore X ′ ⊆ A \ {β}, A ÷ α ⊆ X ′, X ′ 6` α and for any Y ⊆ A such that
Cn(X ′) ⊂ Cn(Y ) it holds that Y ` α.

Proof (Proof of Observation 14) Let X ∈ A ⊥ α. By Observation 8 it follows
that X ∈ A oα. Assume now, by reductio ad absurdum, that there exists some
Y ∈ A oα such that X ⊂ Y . From Y ∈ A oα it follows that Y ⊆ A and Y 6` α.
Hence, from Y 6` α and X ⊂ Y ⊆ A, it follows (by condition (3) of Definition
2) that X 6∈ A ⊥ α. Contradiction. Hence A ⊥ α ⊆ {X ∈ A o α : @Y ∈ A o
α such that X ⊂ Y }.

Let X ′ ∈ Γ = {X ∈ A o α : @Y ∈ A o α such that X ⊂ Y }. Hence X ′ ∈ A o α
and there exists no Y ′ in A o α such that X ′ ⊂ Y ′. It follows from X ′ ∈ A o α
that X ′ ⊆ A and X ′ 6` α. Let Z ⊆ A be such that X ′ ⊂ Z. From X ′ ∈ Γ it
follows that Z 6∈ A oα. Assume by reductio ad absurdum that Z 6` α. Hence, by
condition (3) of Definition 10, there exists Z ′ ⊆ A such that Cn(Z) ⊂ Cn(Z ′)
and Z ′ 6` α. From X ′ ⊂ Z it follows that Cn(X ′) ⊆ Cn(Z) ⊂ Cn(Z ′) and
Z ′ 6` α. Hence X ′ 6∈ A o α. Contradiction. Therefore Z ` α, and we can
conclude that X ′ ∈ A ⊥ α. Therefore {X ∈ A o α : @Y ∈ A o α such that X ⊂
Y } ⊆ A ⊥ α.

Proof (Proof of Theorem 2) Let A be a belief base. We start by showing that
every maximal residual contraction on A is a partial meet contraction on A.
Let γm : {A o ε : ε ∈ L} −→ P(P(A)) be a maximal selection function and let
÷γm be the maximal residual contraction based on γm. Now let γ : {A ⊥ ε :
ε ∈ L} −→ P(P(A)) be such that (for all α ∈ L):

γ(A ⊥ α) = γm(A oα)

We will show that: (1) γ is a (well-defined) function; (2) γ is a selection func-
tion; (3) For all α, A÷γm α = A−γα, where −γ is the partial meet contraction
based on γ.
(1) Let A ⊥ α = A ⊥ β. Combining Lemma 3 and Observation 11 we can
conclude that A oα = A oβ. Hence it follows from the definition of γ and from
the fact that γm is a function, that γ(A ⊥ α) = γ(A ⊥ β).
(2) Since if ` α, then A o α = A ⊥ α = ∅, it follows from the definition of γ
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that γ(∅) = γm(∅) = {A} (since γm is a selection function). It remains to show
that if A ⊥ α 6= ∅, then ∅ 6= γ(A ⊥ α) ⊆ A ⊥ α. Assume that A ⊥ α 6= ∅,
then γ(A ⊥ α) = γm(A o α) and, according to Lemma 4, A o α 6= ∅. Since γm
is a selection function, it holds that ∅ 6= γm(A oα) ⊆ A oα. Furthermore, since
γm is maximal, if X ∈ γm(A oα) then there is no Y ∈ A oα such that X ⊂ Y .
Therefore it follows by Observation 14 that γm(A o α) ⊆ A ⊥ α. Therefore
∅ 6= γ(A ⊥ α) ⊆ A ⊥ α.
(3) If A 6` α, then A ÷γm α = A = A −γ α. Now assume that A ` α. Then
A÷γm α =

⋂
γm(A oα) =

⋂
γ(A ⊥ α) = A−γ α.

Now we show that every partial meet contraction on A is a maximal resid-
ual contraction on A.
Let γ : {A ⊥ ε : ε ∈ L} −→ P(P(A)) be a selection function and let ÷γ be the
partial meet contraction based on γ. Now let γm : {A o ε : ε ∈ L} −→ P(P(A))
be such that (for all α ∈ L):

γm(A oα) = γ(A ⊥ α)

We will show that: (1) γm is a (well-defined) function; (2) γm is a maximal
selection function; (3) For all α, A÷γ α = A−γm α, where −γm is the maximal
residual contraction based on γm.
(1) Let A oα = A oβ. Combining Lemma 3 and Observation 11 we can conclude
that A ⊥ α = A ⊥ β. Hence it follows from the definition of γm and from the
fact that γ is a function, that γm(A oα) = γm(A oβ).
(2) Since if ` α, then A o α = A ⊥ α = ∅, it follows, from the definition of γ,
that γ(∅) = γm(∅) = {A} (since γ is a selection function). It remains to show
that if A oα 6= ∅, then:
(a) ∅ 6= γm(A oα) ⊆ A oα;
(b) If X ∈ γm(A oα), then there is no Y ∈ A oα such that X ⊂ Y .
Assume that A o α 6= ∅. Then, according to Lemma 4, A ⊥ α 6= ∅. Therefore,
since γ is a selection function, it holds that ∅ 6= γ(A ⊥ α) ⊆ A ⊥ α. By
Observation 8 A ⊥ α ⊆ A o α. Hence, since γm(A o α) = γ(A ⊥ α), we can
conclude that (a) holds.
Next we prove (b). Let X ∈ γm(A o α). Since γm(A o α) = γ(A ⊥ α) it holds
that X ∈ A ⊥ α. Therefore, it follows from Observation 14 that there is no
Y ∈ A oα such that X ⊂ Y . Thus (b) holds.
(3) If A 6` α, then A ÷γ α = A = A −γm α. Now assume that A ` α. Then
A÷γ α =

⋂
γ(A ⊥ α) =

⋂
γm(A oα) = A−γm α.
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