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1. Introduction

The intersections of Brownian motion paths have been investigated since the ’40s.2°
One can consider intersections of sample paths with themselves or e.g. with other,

37 one can study simple® or n-fold intersections®

independent Brownian motions,
and one can ask all of these questions for linear, planar, spatial or — in general —
d-dimensional Brownian motion: Evidently self-intersections become increasingly
scarce as the dimension d increases.

Intersection local times of Brownian motion were studied by many authors, see
e.g. Refs. 1, 311, 15, 18-39. A more systematic review can be found e.g. in the
recent Ref. 15.

An informal but rather suggestive definition of self-intersection local time of
Brownian motion B is in terms of an integral over Dirac’s — or Donsker’s — 6-
function

L= / @t §(B(tz) — B(t1)).,

intended to sum up the contributions from each pair of “times” t1,ts for which the
Brownian motion B is at the same point.

In Edwards’ modeling of polymer molecules by Brownian motion paths, L is used
to model the “excluded volume” effect: Different parts of the molecule should not
be located at the same point in space. As another application, Symanzik introduced
L as a tool for constructive quantum field theory in Ref. 32.

A rigorous definition, such as e.g. through a sequence of Gaussian’s approximat-
ing the J-function or in terms of generalized Brownian functionals,!0:31:34 will lead
to increasingly singular objects and will necessitate various “renormalizations” as
the dimension d increases. For d > 1 the expectation will diverge in the limit and
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must be subtracted,'®33 clearly L will then no longer be positive. For d > 3,5,7,. ..
further subtractions have been proposed®* that will make L a well-defined general-
ized function of Brownian motion.

For d = 3 another renormalization has been constructed by Westwater to make
the Gibbs factor e~9F of the polymer model well-defined,?® for yet another, recent
approach see Ref. 1.

Yor, in Ref. 39, first suppresses the short time accumulation of self-intersections
by the regularization

d(B(t2) —B(t1)) = 6(B(t2) — B(t1) + €)
and shows, again for d = 3, that a multiplicative renormalization
r(€) (Le — E(Le))

gives rise to another, independent Brownian motion as the weak limit of regularized
and subtracted approximations to L.

In this paper we study similar limits, for arbitrary d > 3, using a Gaussian
regularization of the J-function for which the chaos expansion of the corresponding
regularized L. is available.!” For a suitably subtracted and renormalized local time,
each term in this expansion converges in law to a Brownian motion.

We prepare and state these results in Sec. 2, in Sec. 3 we give their proofs. In a
forth coming paper® we extend these results to the corresponding series.

2. Definitions and Main Results
2.1. Whaite noise analysis and local times

We reproduce here some white noise analysis concepts as introduced in Ref. 10,
referring to Ref. 14 for a systematic presentation.
Brownian motions B;,i = 1,...,d, have version in terms of white noise w; via

Bi(t) = (i) = [ wilo)ds.

Hence we consider independent d-tuples of Gaussian white noise w = (w1,...,wq)
and correspondingly, d-tuples of test functions f = (f1,...,fs) € S(R, R?), and
introduce the following notation:

d d
n=(ny,...,nq), n:Zni, n!:Hni!
1 1
d
.0 = [t f20),
i=1
d

(Fy, £87) = /d"t Falty, .- tn) Q) FE" (t1,- - tn)

i=1
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and similarly for (: w®™ :, F},) where for d-tuples of white noise the Wick product!*
:...: generalizes to

d
cw®n ::®:w;®"i: .
i=1

The vector valued white noise w has the characteristic function
Cle) = B = [ dufuw]eied —e 360, W
5*(R,R%)

where (w,f) = E?:1<wi,fi> and f; € S(R, R).
The Hilbert space
(L2) = L(dp)

is canonically isomorphic to the d-fold tensor product of Fock spaces of symmetric
square integrable functions:

o ®d
(L?) ~ (@ Sym L*(RF, k!d’%)) =3, (2)

k=0

for the general element of (L?), this implies the chaos expansion:

(o9}

pw) =D (W F) 3)

n=0
with kernel functions F' in §.
It is desirable to introduce regularizations for the intersection local time, with
a view towards the construction of well-defined, “renormalized” intersection local
times in higher dimensions where the latter do not exist without subtractions. A
computationally simple regularization is, for € > 0,

t to
ng/ dtg/ dt: 6.(B(ts) — B(t1)),
0 0
with

5.(B(ts) — B(t)) = (2me) #2222 (4)

It has the following chaos expansion, which we quote here only for d > 3 :

Theorem 2.1.1° For any e > 0, L. — E(L.) has kernel functions F € § given by
-1
Fem(st-o o) = (1) (e + 2m) 2% (3)1)
. @(U)@(t — ’U) . ((v —u+ E)—% + (t + E)_%

—(v+e)F—(t—u+e)™”) (5)

if all n; are even, and zero otherwise, with v(s1,...,8,) = max(s1,...,Sn),
w(81,...,8,) = min(sy,...,Sn), and » = (n+d)/2—2. © is the Heaviside function.
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Each kernel function is thus the sum of four terms. The first one gives rise to

Definition 2.1.

Mi(d,n,e) = / d"s(v—u+e) " w(s):
[0,¢]”

d
:/ d"s(v7u+s)*”®:wi(s’i)...wi(sii) .
[0,¢]" i=1
d n; t 577:71. d
= Z Z / ds:, A" ts(v—ute)* ® wi(s]) - wi(sy,,)
i=1 m=1"0 0 i=1

The others give

Ni(d,n,e) = /[0 oo d"s((t+e)* —(v+e) ™ —(t—u+e) ) :w®s): . (7)

All the above processes are continuous.

Definition 2.2. We denote the nth order contribution to the regularized local time
L. by

Ki(d,n,e) = (-1)% (%(;H 1)(2m)%/2 23 (g)!)_l (My(d,n, &) + Ny(d, n, £)) .
(8)

Remark 2.1. Our key observation is that, as € goes to zero, M is more singular
than N, and that it is a Brownian martingale.
2.2. The main theorems

Theorem 2.2. For d > 3, the renormalized M; converge in distribution to inde-
pendent Brownian motions (3; :

(rM;,i=1,...,d) - (,/Eknﬁi;il,...,d)
e—+0 n
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with
n(n —1) ifd=13,
k2 =n! I(d — 4)! 9
n (:.—(’—dd:l;.)! fd>3 (9)
if
|Ing|~1/2 ford=3,
)= {e<d3>/2 for d > 3.

Theorem 2.3. For d > 3, the renormalized nth order contributions to the reqular-
ized local time L. converge in distribution to Brownian motions (3
£
rK(d,n,e) — ¢n,dfn
e——+40
with
—2

ha=kp (}f(}f +1)(2m)¥/2 2% (g)')

3. Proofs

Proposition 3.1. My, are orthogonal Brownian martingales.

Proof. Orthogonality is obvious. For the martingale property see Refs. 13 and 2,
it is a consequence of the fact that the kernel functions of M; in (6) do not depend
on ¢ (except through the limit of integrations). m|

Their limiting behavior, as € — 40, is studied in the following lemma (from now
on we shall consider only the situations which require renormalisation, i.e. d > 3).

Lemma 3.1. Ase — +0,

| |Ine| for d =3,

_ kg0
T on i (2 +0(1)) {5_(d_3) for d > 3.

Proof.

2 _ Mk e
= ZEnlll(v —u+ &) G0y

For d > 3

t
10—+ &) B = / &s(o - ute) 2
_ n 2
n—l / dv/ v u
v—u+5)
3 d -2
= n / dv/ 7%4»1 ntd—4

= &34y (7(:'4(:11 745)‘ + 0(1))
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while for d = 3
[0 = u+ &) Baogny = nln — Dt Inel(L +o(1)). 0
To show convergence of these martingales by Theorem VIII.3.11 of Ref. 16 we
must show convergence of characteristics. Since the processes M are continuous,

this reduces to showing convergence in probability of (rM;,rMjy): as e — +0. This
will be taken care of by Proposition 3.1 which we prepare now:

t
(rM;, v My), :r25ik/ dv(mi(fu))2
0
and we need to estimate

/0 dv(m;(v))? = Z( w®k :,Gf?) .

k
Let us note that

n —x
E(<’I’MZ‘,7’Mk>t) = E(’}“2M1Mk) = (Sik;’rQ?kl’l!”(’U —u+ E) ||%2([0,t]") ;

E((rM;,rMj):) = 5ik%k3(t +o(1)).

Next we intend to show that the rest of (rM;,rM}); goes to zero. The kernel of the
highest order is

T2G§2725i(31, 815y Sn_1,8,_1)
t
:r2/ drO (1 —v V) (T—u+e) *(r—u' +¢e)* (10)
0
v and u") are the largest and the smallest of sgl) and (8;)r = dik-
(For n = 2: u) = v) = 5())

Remark 3.1. The integral (10) can be calculated in closed form (using e.g.
Nos. 2.15 and 2.263.4 of Ref. 12), but one gets a useful approximation by introducing
the following auxiliary functions:

H2n72(517 <oy Sn—1; 5/17 SRR Slnfl;e; d)
=@wVy —uvau + 5)*(n+d)/2+3(,u Vo —uAd + 6)—(ner)/2+2 ,

where v = max(s;),u = min(s;) and v' = max(s}), v’ = min(s};). These functions
majorize the kernel functions.

Lemma 3.2. Forn > 2 and » > 1
0 S Gélr)l_Qsi (817 5/1; yeee3Sn—1, S/nfl)

1
< HH2n—2(817-~-,Sn—1;8/1,~-~78/n,1;€;d)~ (11)
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Proof.
S/ Ot —v V)T —ute) #(r—u +e)7*
0
S/ T(r—uVu +e) F(vVe —uAu +¢e)*
< (Vv —uvau +e) T ove —und +e)7F. O

x—1
This estimate is sufficient to show
Lemma 3.3. For2n—2§; #0

QG(Z)

a_2s, =0 in L*(R*7?)

as € goes to +0.

Proof. Consider first n > 3. By the above estimate it is sufficient to show that

. 4 2 =
Jim 7 Fan o v = 0.

| Han 2|72 (gen-2) :/dn_ls /d”_ls’(v Vo' —uVau'+e)* (v Vo —u Au4e) T2

_ /dv/dv/du/ au!

U _ u)n 3( u/)n—?;

(U\/U —uVau +e) a6y Vo —uAu 4 g)rtd—4

t/e Y Y '
< Cn€8_2d/ dy/ dy’/ dm/ dx’
0 0 0 0

(y—zVva +1)8 3y —zAr +1)d1

by QUEEN'S UNIVERSITY on 02/02/15. For personal use only.
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and then decompose the z-integration into the following two domains
¥ <z and x<2.

In the first case

g8-2d /t/6 dy /y dy' /y’ dx’ /y dx 1

0 0 0 o Y-+ )43y —a' +1)d1
g8 /t/E dy /?/ dy' /yl dx’ 1 /y dz 1

0 0 0 (y—2 + 1)1 o, (y—x+1)43
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We first estimate the last integral

y—1 ifd=3,

) .
/ : T3dr < In(y —a2'+1) ifd=4,
m 1fd>4,

and one finds
; o(1) ifd=3
lo@E™ %) ifd> 3.

Hence, in both cases, 74 vanishes as € — 0.
The second case is

8—2d t/s Y 1 Y / y' / 1
- d dp—m——— d de' ——m8M8M8M— . 12
‘ /o y/o ””(y—xﬂ)d*l/x v e rnrs 12

Estimating the last integrand by 1 we find

v v 1 (y —x)?
! !
< .
/mdy/z e (y—a' +1)4=3 = 2

Substituting these estimates into the integrals over x and y gives for d > 3
0(1) ifd=3

I < const. &%~ Zd/ dy/ dx —:c—i—l))dl O(e'lne) ifd=4
O(e™24) if d>4

so in that 7*I vanishes as € — 0. For n = 2 it is sufficient to use the estimate

t
0 < Gs :/ drO(T —u VvV u') (T —u+ )"V —u 4 )72
0

¢
< / dr(t—uvu' + )2 (v —uAu 4 )2 = Hy(u, )

V!
and to verify that

lim T4IIH2H%2([0,t]2) =0. -

e—+0

With this lemma we have established that the highest order term of the (renor-
malized) quadratic variation goes to zero in quadratic mean for any ¢ > 0. The
kernels Gy, of the other terms are obtained by integrating over pairs of s, s’ such as
e.g. in

Sym/ dSG;()n 5 3 3;3278/2;7"';81'7,—178;71)7

these new functions are in fact also bounded by an expression like (10), and hence
by (11), so that for all € > 0,

|G|l < const. ||Hy| -
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With this goal we show:

Lemma 3.4. Let n > 2 and m > 1, and let F, ., be a function symmetric in the
variables s and in the variables s’, with

! ! !
0 < Fom(S1,- -y Sn—1,8n,81s---s5n_1,5n)

i<n i<n i<n

< C/ot dre (7- — max(s, s’)) (T — min(s;) + 5) - (7- — min(s}) + 5) - (13)

Then ¢, < oo such that
t
0< / ASEy m(S1y- -y Sn—1,8,81,.++,8n_1,5)
0

t —m+1/2
< cm / dr® (T — max(s, s’)) (T — min(s;) + 5)
0 <n <n
—m+1/2
-(7‘ - Hiln(s;) + a) .

Proof. Under the assumption of the lemma

¢
! !
/ AsFy m (81, Sn—1,8,81,---351,_1,5)
0

t t
§c/ ds/ dT@(T— max (Si,3273)>
0 o 1<i<n—1

~(7'7 min (si,s)+s)_m(77 min (s;,s)Jra)_m.

1<i<n—1 1<i<n—1
Using
u= min s, «' = min s},
1<i<n—1 1<i<n—1
v= max s, v = max s}.
1<i<n—1 1<i<n—1

(For n = 2: u) = o) = sg/).) Assuming without loss of generality that u < u’ we
can decompose the s-integration of our estimate as follows:

c/ot ds /Ot drO(r — max(v,v', 8))(r — min(u, ) + &)™ (r — min(, s) + )™

t u u’ vV’ t
= c/ dr / +/ +/ +/ ds
0 0 u u’ vV’

-O(1 — max(v,v’, 5))(7 — min(u, s) + £) " (7 — min(v’, s) + )™

t u u’
:c/ dT(/ dS(T*S+€)72m+/ ds(t—u+e) ™ ™(r—s+¢)™™
v 0 u

Vo'

T

vV’
+/ d5(77u+5)*m(77u’+6)7m+/

! vVo!

ds(t—u+¢e)™™(r — u’+5)m) .
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We now show that each of the four terms obeys the postulated estimate (14)

t u t
1
/ dT/ ds(t —s+¢e)7?m < / dr(t —u +¢)~2m*!
vVo! 0 2m -1 vVu!
1 t

since u < v’ and m > 1/2.
The second term

t u’
/ dT/ ds(r—u+e) ™™ (r—s+e)™™
vV’ u
1 t

< —— /va, dr(t —u+¢e) ™(r —u +¢)" ™

1 ¢ . L
< —/ drO(T — vV V) (T —u+e) " 2 (r —u )™tz
m—1Jy

using again u < u/. The third term

i vV’
/ dT/ ds(t—u+e)™™(r—u +e)™™
vVu! u’

Finally

t
/ dT/ Tds(t —u+e) " (r—u +e)"
vV’ vVo'

t

:/ dr(t —u+¢e) ™1 —u' +e)"™(r —v V')
vVu!
t
S/ dr(t —u+¢e) ™(r —u' +¢e) ™ (r — )
vV’
¢ 1 1
S/ drO(t —v V) (T —u+e) " e (r —u +e) Tz O
0

Combining this lemma with the previous one we conclude that for all kernel
functions Gy, with k£ > 2 arguments

1. 4 2< 1 4 2< 1 4 H 2:
Jim [ Sym Gyll* < Jim o |Gyll* < lim o | = 0,
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i.e. we have shown

Proposition 3.2.

n
ms — lim (rM;,rMy), = O —k2t .
e—+0 n

Proof of Theorem 2.2. The above limit is clearly (up to constants) the
quadratic variation of a Brownian motion. Theorem 2.2 is then a consequence of
e.g. Theorem VIII.3.11 in Ref. 16, which in the present case of continuous mar-
tingales requires convergence in probability of quadratic variations for a dense set
of t.

To control the remaining terms N;(d, n, ) in the chaos expansion we observe
that

IN(d, 1, €) |2y = nll[ (¢ + )7 = (v +) 7 = (t —u+ ) *I[T2(po.m)
<nl(|(t+e) 77> + (v + )7 II72 + It —u+e)~[Z2)-
The first of these three norms is equal to t"(t +¢)~2*, i.e. O(1). The second one

is

) t ,Un—l i t/e :L,n—l
" —ax __ d — - d.
/[0775]” s(v+e) n/o v (v + e)n+d—a ne /0 z (z + 1)n+d—4

o(1) ford=3
=< O(lne) ford=14
O(e*=4) ford >4
which are suppressed by the renormalization

|lng|~! ford =3,
r?(e) =
gd=3 for d > 3. U

A similar estimate holds for the third term of N, so that we have shown

Lemma 3.5.

ms — 61_1>I£0T(6)Nt(d’ n,e) =0.

In fact the convergence is uniform in any finite ¢-interval. Next we show
Lemma 3.6. The processes {r(¢)N-(d,n,e) : € > 0}, {r(e)M.(d,n,e) : € > 0} and
their linear combinations are tight.

Proof. A criterion for tightness of M (following p. 64 of Ref. 17) is

sup E|rMy — rM,|* < Cp(t — S)H'ﬂ, (15)
e>0

VT >0and 0 <s<t<T and for some positive constants «, 8 and Cr.



Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 2000.03:223-236. Downloaded from www.worldscientific.com
by QUEEN'S UNIVERSITY on 02/02/15. For personal use only.

234 M. de Faria, C. Drumond & L. Streit

As a first step we show

sup E|lrM; — rM|*> < Cr(t — s) (16)
e>0

by direct calculation:
t v
E|M; — M,|* = n!n/ dv/ d" ts(v—u+e)2.
s 0

The second integral may be estimated as follows:

/Ov A" ls(v—u+e)" = (n—-1) /Ov du( A

v—u+g)rtd—4

3 4 ’U/Ed 1
< (1 — - -
<(n—-1)e /0 x(:c+1)d—2

In(v+e)—Ine ford=3,
—(n—1)

O3~ %) ford > 3.

Renormalization of this estimate by the factor r? makes it bounded on [0, 7],
and the integral over v gives the desired estimate (16), i.e.

|rM; — M3 < cp(t —s). (17)

Note that the kernel functions of K are all dominated by those of M. Hence we
have also, possibly with a larger constant cr, the estimate

|rK; —rK||3 < cr(t—s). (18)

By the hypercontractivity of the Ornstein—Uhlenbeck semigroup (see e.g. p. 235 of
Ref. 14), one has for nth order white noise monomials ¢ € (L?), and any o > 2

lella < enallells -
For ¢ = rK; — rK, and using the above estimate for the 2-norm, we get
ElrK; — rK,|* < Op(t — 5)/?

as required to ensure tightness. The estimates for rN etc. are of the same
kind. |

Proof of Theorem 2.3. We need to consider

rK =rM +rN

knowing that, as € — +0, the 7K are tight by Lemma 3.6, the rM converge in law,
and the rV; go to zero in mean square. The latter two facts are sufficient, via the
Cramér—Wold device (see e.g. p. 61 of Ref. 17), for finite dimensional convergence
of rK; tightness then implies convergence in law.
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