Infinite Dimensional Analysis, Quantum Probability and Related Topics Vol. 3, No. 2 (2000) 223–236 © World Scientific Publishing Company

THE RENORMALIZATION OF SELF-INTERSECTION LOCAL TIMES I. THE CHAOS EXPANSION

MARGARIDA DE FARIA, CUSTÓDIA DRUMOND and LUDWIG STREIT*

CCM, Universidade da Madeira, P-9000 Funchal, Portugal

Communicated by the editors Received 3 March 1999

1. Introduction

The intersections of Brownian motion paths have been investigated since the '40s.²⁰ One can consider intersections of sample paths with themselves or e.g. with other, independent Brownian motions,³⁷ one can study simple⁵ or n-fold intersections⁶ and one can ask all of these questions for linear, planar, spatial or — in general — d-dimensional Brownian motion: Evidently self-intersections become increasingly scarce as the dimension d increases.

Intersection local times of Brownian motion were studied by many authors, see e.g. Refs. 1, 3–11, 15, 18–39. A more systematic review can be found e.g. in the recent Ref. 15.

An informal but rather suggestive definition of self-intersection local time of Brownian motion B is in terms of an integral over Dirac's — or Donsker's — δ -function

$$L \equiv \int d^2t \,\, \delta(B(t_2)-B(t_1))\,,$$

intended to sum up the contributions from each pair of "times" t_1, t_2 for which the Brownian motion B is at the same point.

In Edwards' modeling of polymer molecules by Brownian motion paths, L is used to model the "excluded volume" effect: Different parts of the molecule should not be located at the same point in space. As another application, Symanzik introduced L as a tool for constructive quantum field theory in Ref. 32.

A rigorous definition, such as e.g. through a sequence of Gaussian's approximating the δ -function or in terms of generalized Brownian functionals, 10,31,34 will lead to increasingly singular objects and will necessitate various "renormalizations" as the dimension d increases. For d > 1 the expectation will diverge in the limit and

^{*}Also at: BiBoS, Univ. Bielefeld, D 33615 Bielefeld, Germany

must be subtracted, 18,33 clearly L will then no longer be positive. For $d>3,5,7,\ldots$ further subtractions have been proposed 34 that will make L a well-defined generalized function of Brownian motion.

For d=3 another renormalization has been constructed by Westwater to make the Gibbs factor $e^{-g \cdot L}$ of the polymer model well-defined,³⁶ for yet another, recent approach see Ref. 1.

Yor, in Ref. 39, first suppresses the short time accumulation of self-intersections by the regularization

$$\delta(\mathbf{B}(t_2) - \mathbf{B}(t_1)) \to \delta(\mathbf{B}(t_2) - \mathbf{B}(t_1) + \boldsymbol{\varepsilon})$$

and shows, again for d=3, that a multiplicative renormalization

$$r(\varepsilon) \left(L_{\varepsilon} - E(L_{\varepsilon}) \right)$$

gives rise to another, independent Brownian motion as the weak limit of regularized and subtracted approximations to L.

In this paper we study similar limits, for arbitrary $d \geq 3$, using a Gaussian regularization of the δ -function for which the chaos expansion of the corresponding regularized L_{ε} is available.¹⁰ For a suitably subtracted and renormalized local time, each term in this expansion converges in law to a Brownian motion.

We prepare and state these results in Sec. 2, in Sec. 3 we give their proofs. In a forth coming paper³ we extend these results to the corresponding series.

2. Definitions and Main Results

2.1. White noise analysis and local times

We reproduce here some white noise analysis concepts as introduced in Ref. 10, referring to Ref. 14 for a systematic presentation.

Brownian motions B_i , i = 1, ..., d, have version in terms of white noise ω_i via

$$B_i(t) = \langle \omega_i, 1_{[0,t]} \rangle = \int_0^t \omega_i(s) ds$$
.

Hence we consider independent d-tuples of Gaussian white noise $\boldsymbol{\omega} = (\omega_1, \dots, \omega_d)$ and correspondingly, d-tuples of test functions $\mathbf{f} = (f_1, \dots, f_d) \in S(R, R^d)$, and introduce the following notation:

$$\mathbf{n}=(n_1,\ldots,n_d), \qquad n=\sum_1^d n_i, \qquad \mathbf{n}!=\prod_1^d n_i!$$

$$\langle \mathbf{f}, \mathbf{f} \rangle = \sum_{i=1}^{d} \int dt \ f_i^2(t) \,,$$

$$\langle F_{\mathbf{n}}, \mathbf{f}^{\otimes \mathbf{n}} \rangle = \int d^n t \ F_{\mathbf{n}}(t_1, \dots, t_n) \ \bigotimes_{i=1}^d f_i^{\otimes n_i}(t_1, \dots, t_n)$$

and similarly for $\langle : \boldsymbol{\omega}^{\otimes \mathbf{n}} : , F_{\mathbf{n}} \rangle$ where for *d*-tuples of white noise the Wick product¹⁴ : . . . : generalizes to

$$: \boldsymbol{\omega}^{\otimes \mathbf{n}} := \bigotimes_{i=1}^d : \omega_i^{\otimes n_i} :$$
 .

The vector valued white noise $\boldsymbol{\omega}$ has the characteristic function

$$C(\mathbf{f}) = E(e^{i\langle \boldsymbol{\omega}, \mathbf{f} \rangle}) = \int_{S^*(R, R^d)} d\mu \left[\boldsymbol{\omega} \right] e^{i\langle \boldsymbol{\omega}, \mathbf{f} \rangle} = e^{-\frac{1}{2}\langle \mathbf{f}, \mathbf{f} \rangle}, \qquad (1)$$

where $\langle \boldsymbol{\omega}, \mathbf{f} \rangle = \sum_{i=1}^{d} \langle \omega_i, f_i \rangle$ and $f_i \in S(R, R)$.

The Hilbert space

$$(L^2) \equiv L^2(d\mu)$$

is canonically isomorphic to the d-fold tensor product of Fock spaces of symmetric square integrable functions:

$$(L^2) \simeq \left(\bigoplus_{k=0}^{\infty} \operatorname{Sym} L^2(\mathbb{R}^k, k! d^k t)\right)^{\otimes d} \equiv \mathfrak{F},$$
 (2)

for the general element of (L^2) , this implies the chaos expansion:

$$\varphi(\boldsymbol{\omega}) = \sum_{\mathbf{n}=0}^{\infty} \langle : \boldsymbol{\omega}^{\otimes \mathbf{n}} :, F_{\mathbf{n}} \rangle$$
 (3)

with kernel functions F in \mathfrak{F} .

It is desirable to introduce regularizations for the intersection local time, with a view towards the construction of well-defined, "renormalized" intersection local times in higher dimensions where the latter do not exist without subtractions. A computationally simple regularization is, for $\varepsilon > 0$,

$$L_{\varepsilon} \equiv \int_0^t dt_2 \int_0^{t_2} dt_1 \, \delta_{\varepsilon} (\mathbf{B}(t_2) - \mathbf{B}(t_1)) \,,$$

with

$$\delta_{\varepsilon}(\mathbf{B}(t_2) - \mathbf{B}(t_1)) \equiv (2\pi\varepsilon)^{-d/2} e^{-\frac{|\mathbf{B}(t_2) - \mathbf{B}(t_1)|^2}{2\varepsilon}}.$$
 (4)

It has the following chaos expansion, which we quote here only for $d \geq 3$:

Theorem 2.1.¹⁰ For any $\varepsilon > 0$, $L_{\varepsilon} - E(L_{\varepsilon})$ has kernel functions $F \in \mathfrak{F}$ given by

$$F_{\varepsilon,\mathbf{n}}(s_1,\dots,s_n) = (-1)^{\frac{n}{2}} \left(\varkappa(\varkappa+1)(2\pi)^{d/2} \, 2^{\frac{n}{2}} \left(\frac{\mathbf{n}}{2} \right)! \right)^{-1}$$

$$\cdot \Theta(u)\Theta(t-v) \cdot \left((v-u+\varepsilon)^{-\varkappa} + (t+\varepsilon)^{-\varkappa} \right)$$

$$-(v+\varepsilon)^{-\varkappa} - (t-u+\varepsilon)^{-\varkappa}$$

$$(5)$$

if all n_i are even, and zero otherwise, with $v(s_1, \ldots, s_n) \equiv \max(s_1, \ldots, s_n)$, $u(s_1, \ldots, s_n) \equiv \min(s_1, \ldots, s_n)$, and $\varkappa \equiv (n+d)/2 - 2$. Θ is the Heaviside function.

Each kernel function is thus the sum of four terms. The first one gives rise to

Definition 2.1.

$$M_{t}(d, \mathbf{n}, \varepsilon) \equiv \int_{[0,t]^{n}} d^{n} s(v - u + \varepsilon)^{-\varkappa} : \omega^{\otimes \mathbf{n}}(s) :$$

$$= \int_{[0,t]^{n}} d^{n} s(v - u + \varepsilon)^{-\varkappa} \bigotimes_{i=1}^{d} : \omega_{i}(s_{1}^{i}) \cdots \omega_{i}(s_{n_{i}}^{i}) :$$

$$= \sum_{i=1}^{d} \sum_{m=1}^{n_{i}} \int_{0}^{t} ds_{m}^{i} \int_{0}^{s_{m}^{i}} d^{n-1} s(v - u + \varepsilon)^{-\varkappa} \bigotimes_{i=1}^{d} : \omega_{i}(s_{1}^{i}) \cdots \omega_{i}(s_{n_{i}}^{i}) :$$

$$= \sum_{i=1}^{d} n_{i} \int_{0}^{t} dB_{i}(\tau) \int_{0}^{\tau} d^{n-1} s(\tau - u + \varepsilon)^{-\varkappa} : \omega^{\otimes \mathbf{n} - \delta_{i}}(s) :$$

$$= \sum_{k=1}^{d} \int_{0}^{t} dB_{k}(v) m_{k}(v)$$

$$\equiv \sum_{k=1}^{d} M_{k,t}. \tag{6}$$

The others give

$$N_t(d, \mathbf{n}, \varepsilon) \equiv \int_{[0, t]^n} d^n s((t + \varepsilon)^{-\varkappa} - (v + \varepsilon)^{-\varkappa} - (t - u + \varepsilon)^{-\varkappa}) : \omega^{\otimes \mathbf{n}}(s) : .$$
 (7)

All the above processes are continuous.

Definition 2.2. We denote the **n**th order contribution to the regularized local time L_{ε} by

$$K_t(d, \mathbf{n}, \varepsilon) \equiv (-1)^{\frac{n}{2}} \left(\varkappa(\varkappa + 1)(2\pi)^{d/2} 2^{\frac{n}{2}} \left(\frac{\mathbf{n}}{2} \right)! \right)^{-1} \left(M_t(d, \mathbf{n}, \varepsilon) + N_t(d, \mathbf{n}, \varepsilon) \right). \tag{8}$$

Remark 2.1. Our key observation is that, as ε goes to zero, M is more singular than N, and that it is a Brownian martingale.

2.2. The main theorems

Theorem 2.2. For $d \geq 3$, the renormalized M_i converge in distribution to independent Brownian motions β_i :

$$(rM_i, ; i = 1, \dots, d) \overset{\mathfrak{L}}{\underset{\varepsilon \to +0}{\longrightarrow}} \left(\sqrt{\frac{n_i}{n}} k_n \beta_i; i = 1, \dots, d\right)$$

with

$$k_n^2 = \mathbf{n}! \begin{cases} n(n-1) & \text{if } d = 3, \\ \frac{n!(d-4)!}{(n+d-5)!} & \text{if } d > 3 \end{cases}$$
 (9)

if

$$r(\varepsilon) = \begin{cases} |\ln \varepsilon|^{-1/2} & \text{for } d = 3, \\ \varepsilon^{(d-3)/2} & \text{for } d > 3. \end{cases}$$

Theorem 2.3. For $d \geq 3$, the renormalized **n**th order contributions to the regularized local time L_{ε} converge in distribution to Brownian motions β

$$rK(d, \mathbf{n}, \varepsilon) \xrightarrow[\varepsilon \to +0]{\mathfrak{L}} c_{\mathbf{n}, d} \beta_{\mathbf{n}}$$

with

$$c_{\mathbf{n},d}^2 = k_n^2 \left(\varkappa (\varkappa + 1) (2\pi)^{d/2} \, 2^{\frac{n}{2}} \left(\frac{\mathbf{n}}{2} \right)! \right)^{-2} \,.$$

3. Proofs

Proposition 3.1. $M_{k,t}$ are orthogonal Brownian martingales.

Proof. Orthogonality is obvious. For the martingale property see Refs. 13 and 2, it is a consequence of the fact that the kernel functions of M_t in (6) do not depend on t (except through the limit of integrations).

Their limiting behavior, as $\varepsilon \to +0$, is studied in the following lemma (from now on we shall consider only the situations which require renormalisation, i.e. $d \ge 3$).

Lemma 3.1. As $\varepsilon \to +0$,

$$\|M_{k,t}\|_2^2 = \frac{n_k}{n} k_n^2 (t + o(1)) \begin{cases} |\ln \varepsilon| & \text{for } d = 3, \\ \varepsilon^{-(d-3)} & \text{for } d > 3. \end{cases}$$

Proof.

$$||M_{k,t}||_2^2 = \frac{n_k}{n} \mathbf{n}! ||(v - u + \varepsilon)^{-\varkappa}||_{L^2([0,t]^n)}^2.$$

For d > 3

$$\begin{aligned} \|(v-u+\varepsilon)^{-\varkappa}\|_{L^{2}([0,t]^{n})}^{2} &= \int_{0}^{t} d^{n} s(v-u+\varepsilon)^{-2\varkappa} \\ &= n(n-1) \int_{0}^{t} dv \int_{0}^{v} du \frac{(v-u)^{n-2}}{(v-u+\varepsilon)^{2\varkappa}} \\ &= n(n-1)\varepsilon^{3-d} \int_{0}^{t} dv \int_{0}^{v/\varepsilon} dx \frac{x^{n-2}}{(x+1)^{n+d-4}} \\ &= \varepsilon^{3-d} t \left(\frac{n!(d-4)!}{(n+d-5)!} + o(1) \right) \end{aligned}$$

while for d=3

$$\|(v-u+\varepsilon)^{-\varkappa}\|_{L^{2}([0,t]^n)}^2 = n(n-1)t|\ln\varepsilon|(1+o(1)).$$

To show convergence of these martingales by Theorem VIII.3.11 of Ref. 16 we must show convergence of characteristics. Since the processes M are continuous, this reduces to showing convergence in probability of $\langle rM_i, rM_k \rangle_t$ as $\varepsilon \to +0$. This will be taken care of by Proposition 3.1 which we prepare now:

$$\langle rM_i, rM_k \rangle_t = r^2 \delta_{ik} \int_0^t dv (m_i(v))^2$$

and we need to estimate

$$\int_0^t dv (m_i(v))^2 \equiv \sum_{\mathbf{k}} \langle : \omega^{\otimes \mathbf{k}} :, G_{\mathbf{k}}^{(i)} \rangle.$$

Let us note that

$$E(\langle rM_i, rM_k \rangle_t) = E(r^2 M_i M_k) = \delta_{ik} r^2 \frac{n_k}{n} \mathbf{n}! \| (v - u + \varepsilon)^{-\varkappa} \|_{L^2([0,t]^n)}^2,$$

$$E(\langle rM_i, rM_k \rangle_t) = \delta_{ik} \frac{n_k}{n} k_n^2 (t + o(1)).$$

Next we intend to show that the rest of $\langle rM_i, rM_k \rangle_t$ goes to zero. The kernel of the highest order is

$$r^{2}G_{2\mathbf{n}-2\boldsymbol{\delta}_{i}}^{(i)}(s_{1},s_{1}';\ldots;s_{n-1},s_{n-1}')$$

$$=r^{2}\int_{0}^{t}d\tau\Theta\left(\tau-v\vee v'\right)\left(\tau-u+\varepsilon\right)^{-\varkappa}(\tau-u'+\varepsilon)^{-\varkappa}$$
(10)

 $v^{(\prime)}$ and $u^{(\prime)}$ are the largest and the smallest of $s_i^{(\prime)}$ and $(\boldsymbol{\delta}_i)_k \equiv \delta_{ik}$. (For n=2: $u^{(\prime)}=v^{(\prime)}=s^{(\prime)}$.)

Remark 3.1. The integral (10) can be calculated in closed form (using e.g. Nos. 2.15 and 2.263.4 of Ref. 12), but one gets a useful approximation by introducing the following auxiliary functions:

$$H_{2n-2}(s_1, \dots, s_{n-1}; s'_1, \dots, s'_{n-1}; \varepsilon; d)$$

$$\equiv (v \vee v' - u \vee u' + \varepsilon)^{-(n+d)/2+3} (v \vee v' - u \wedge u' + \varepsilon)^{-(n+d)/2+2}$$

where $v \equiv \max(s_i), u \equiv \min(s_i)$ and $v' \equiv \max(s'_i), u' \equiv \min(s'_i)$. These functions majorize the kernel functions.

Lemma 3.2. For n > 2 and $\varkappa > 1$

$$0 \leq G_{2\mathbf{n}-2\boldsymbol{\delta}_{i}}^{(i)}(s_{1}, s_{1}'; \dots; s_{n-1}, s_{n-1}')$$

$$\leq \frac{1}{\varkappa - 1} H_{2n-2}(s_{1}, \dots, s_{n-1}; s_{1}', \dots, s_{n-1}'; \varepsilon; d). \tag{11}$$

Proof.

$$0 \leq \int_0^t d\tau \Theta(\tau - v \vee v')(\tau - u + \varepsilon)^{-\varkappa} (\tau - u' + \varepsilon)^{-\varkappa}$$

$$\leq \int_{v \vee v'}^t d\tau (\tau - u \vee u' + \varepsilon)^{-\varkappa} (v \vee v' - u \wedge u' + \varepsilon)^{-\varkappa}$$

$$\leq \frac{1}{\varkappa - 1} (v \vee v' - u \vee u' + \varepsilon)^{-\varkappa + 1} (v \vee v' - u \wedge u' + \varepsilon)^{-\varkappa}.$$

This estimate is sufficient to show

Lemma 3.3. For $2\mathbf{n} - 2\boldsymbol{\delta}_i \neq 0$

$$r^2 G_{2\mathbf{n}-2\boldsymbol{\delta}_i}^{(i)} \to 0 \quad in \quad L^2(R^{2n-2})$$

as ε goes to +0.

Proof. Consider first $n \geq 3$. By the above estimate it is sufficient to show that

$$\lim_{\varepsilon \to +0} r^4 \|H_{2n-2}\|_{L^2([0,t]^{2n-2})}^2 = 0.$$

$$||H_{2n-2}||_{L^{2}(R^{2n-2})}^{2} = \int d^{n-1}s \int d^{n-1}s'(v \vee v' - u \vee u' + \varepsilon)^{2-2\varkappa} (v \vee v' - u \wedge u' + \varepsilon)^{-2\varkappa}$$

$$= c_{n} \int_{0}^{t} dv \int_{0}^{v} dv' \int_{0}^{v} du \int_{0}^{v'} du'$$

$$\cdot \frac{(v - u)^{n-3}(v' - u')^{n-3}}{(v \vee v' - u \vee u' + \varepsilon)^{n+d-6}(v \vee v' - u \wedge u' + \varepsilon)^{n+d-4}}$$

$$\leq c_{n} \varepsilon^{8-2d} \int_{0}^{t/\varepsilon} dy \int_{0}^{y} dy' \int_{0}^{y} dx \int_{0}^{y'} dx'$$

$$\cdot \frac{1}{(y - x \vee x' + 1)^{d-3}(y - x \wedge x' + 1)^{d-1}}$$

and then decompose the x-integration into the following two domains

$$x' < x$$
 and $x < x'$.

In the first case

$$I = \varepsilon^{8-2d} \int_0^{t/\varepsilon} dy \int_0^y dy' \int_0^{y'} dx' \int_{x'}^y dx \frac{1}{(y-x+1)^{d-3}(y-x'+1)^{d-1}}$$
$$= \varepsilon^{8-2d} \int_0^{t/\varepsilon} dy \int_0^y dy' \int_0^{y'} dx' \frac{1}{(y-x'+1)^{d-1}} \int_{x'}^y dx \frac{1}{(y-x+1)^{d-3}}.$$

We first estimate the last integral

$$\int_{x'}^{y} \frac{1}{(y-x+1)^{d-3}} dx \le \begin{cases} y-x' & \text{if } d=3, \\ \ln(y-x'+1) & \text{if } d=4, \\ \frac{1}{d-4} & \text{if } d>4, \end{cases}$$

and one finds

$$I = \begin{cases} O(1) & \text{if } d = 3\\ O(\varepsilon^{7-2d}) & \text{if } d > 3 \end{cases}.$$

Hence, in both cases, r^4I vanishes as $\varepsilon \to 0$

The second case is

$$I = \varepsilon^{8-2d} \int_0^{t/\varepsilon} dy \int_0^y dx \frac{1}{(y-x+1)^{d-1}} \int_x^y dy' \int_x^{y'} dx' \frac{1}{(y-x'+1)^{d-3}}.$$
 (12)

Estimating the last integrand by 1 we find

$$\int_{x}^{y} dy' \int_{x}^{y'} dx' \frac{1}{(y-x'+1)^{d-3}} \le \frac{(y-x)^{2}}{2}.$$

Substituting these estimates into the integrals over x and y gives for $d \geq 3$

$$I \le \text{const. } \varepsilon^{8-2d} \int_0^{t/\varepsilon} dy \int_0^y dx \frac{(y-x)^2}{(y-x+1)^{d-1}} = \begin{cases} O(1) & \text{if } d=3\\ O(\varepsilon^{-1} \ln \varepsilon) & \text{if } d=4\\ O(\varepsilon^{7-2d}) & \text{if } d>4 \end{cases}$$

so in that r^4I vanishes as $\varepsilon \to 0$. For n=2 it is sufficient to use the estimate

$$0 \le G_2 = \int_0^t d\tau \Theta(\tau - u \vee u')(\tau - u + \varepsilon)^{1 - d/2} (\tau - u' + \varepsilon)^{1 - d/2}$$

$$\le \int_{u \vee u'}^t d\tau (\tau - u \vee u' + \varepsilon)^{1 - d/2} (u \vee u' - u \wedge u' + \varepsilon)^{1 - d/2} = H_2(u, u')$$

and to verify that

$$\lim_{\varepsilon \to +0} r^4 \|H_2\|_{L^2([0,t]^2)}^2 = 0.$$

With this lemma we have established that the highest order term of the (renormalized) quadratic variation goes to zero in quadratic mean for any t > 0. The kernels G_k of the other terms are obtained by integrating over pairs of s, s' such as e.g. in

Sym
$$\int_0^t ds G_{2(\mathbf{n}-\boldsymbol{\delta}_i)}^{(i)}(s,s;s_2,s_2';,\ldots;s_{n-1},s_{n-1}')$$
,

these new functions are in fact also bounded by an expression like (10), and hence by (11), so that for all $\varepsilon > 0$,

$$||G_k|| \leq \text{const.} ||H_k||$$
.

With this goal we show:

Lemma 3.4. Let $n \geq 2$ and m > 1, and let $F_{n,m}$ be a function symmetric in the variables s and in the variables s', with

$$0 \leq F_{n,m}(s_1, \dots, s_{n-1}, s_n, s_1', \dots, s_{n-1}', s_n')$$

$$\leq c \int_0^t d\tau \Theta\left(\tau - \max_{i \leq n}(s, s_i')\right) \left(\tau - \min_{i \leq n}(s_i) + \varepsilon\right)^{-m} \left(\tau - \min_{i \leq n}(s_i') + \varepsilon\right)^{-m}. \quad (13)$$

Then $\exists c_m < \infty \text{ such that }$

$$0 \leq \int_0^t ds F_{n,m}(s_1, \dots, s_{n-1}, s, s'_1, \dots, s'_{n-1}, s)$$

$$\leq c_m \int_0^t d\tau \Theta\left(\tau - \max_{i < n}(s, s')\right) \left(\tau - \min_{i < n}(s_i) + \varepsilon\right)^{-m+1/2}$$

$$\cdot \left(\tau - \min_{i < n}(s'_i) + \varepsilon\right)^{-m+1/2}.$$
(14)

Proof. Under the assumption of the lemma

$$\int_0^t ds F_{n,m}(s_1, \dots, s_{n-1}, s, s'_1, \dots, s'_{n-1}, s)$$

$$\leq c \int_0^t ds \int_0^t d\tau \Theta\left(\tau - \max_{1 \leq i \leq n-1} (s_i, s'_i, s)\right)$$

$$\cdot \left(\tau - \min_{1 \leq i \leq n-1} (s_i, s) + \varepsilon\right)^{-m} \left(\tau - \min_{1 \leq i \leq n-1} (s'_i, s) + \varepsilon\right)^{-m}.$$

Using

$$u = \min_{1 \le i \le n-1} s_i, \quad u' = \min_{1 \le i \le n-1} s'_i,$$
 $v = \max_{1 \le i \le n-1} s_i, \quad v' = \max_{1 \le i \le n-1} s'_i.$

(For n = 2: $u^{(\prime)} = v^{(\prime)} = s_1^{(\prime)}$.) Assuming without loss of generality that u < u' we can decompose the s-integration of our estimate as follows:

$$c \int_0^t ds \int_0^t d\tau \Theta(\tau - \max(v, v', s))(\tau - \min(u, s) + \varepsilon)^{-m} (\tau - \min(u', s) + \varepsilon)^{-m}$$

$$= c \int_0^t d\tau \left(\int_0^u + \int_u^{u'} + \int_{v'}^{v \vee v'} + \int_{v \vee v'}^t \right) ds$$

$$\cdot \Theta(\tau - \max(v, v', s))(\tau - \min(u, s) + \varepsilon)^{-m} (\tau - \min(u', s) + \varepsilon)^{-m}$$

$$= c \int_{v \vee v'}^t d\tau \left(\int_0^u ds (\tau - s + \varepsilon)^{-2m} + \int_u^{u'} ds (\tau - u + \varepsilon)^{-m} (\tau - s + \varepsilon)^{-m} + \int_{v'}^{v \vee v'} ds (\tau - u + \varepsilon)^{-m} (\tau - u' + \varepsilon)^{-m} + \int_{v'}^{\tau} ds (\tau - u + \varepsilon)^{-m} (\tau - u' + \varepsilon)^{-m} \right).$$

We now show that each of the four terms obeys the postulated estimate (14)

$$\int_{v \vee v'}^{t} d\tau \int_{0}^{u} ds (\tau - s + \varepsilon)^{-2m} \leq \frac{1}{2m - 1} \int_{v \vee v'}^{t} d\tau (\tau - u + \varepsilon)^{-2m + 1}$$
$$\leq \frac{1}{2m - 1} \int_{0}^{t} d\tau \Theta(\tau - v \vee v') (\tau - u + \varepsilon)^{-m + \frac{1}{2}} (\tau - u' + \varepsilon)^{-m + \frac{1}{2}}$$

since u < u' and m > 1/2.

The second term

$$\int_{v\vee v'}^{t} d\tau \int_{u}^{u'} ds (\tau - u + \varepsilon)^{-m} (\tau - s + \varepsilon)^{-m}$$

$$\leq \frac{1}{m-1} \int_{v\vee v'}^{t} d\tau (\tau - u + \varepsilon)^{-m} (\tau - u' + \varepsilon)^{-m+1}$$

$$\leq \frac{1}{m-1} \int_{0}^{t} d\tau \Theta(\tau - v \vee v') (\tau - u + \varepsilon)^{-m+\frac{1}{2}} (\tau - u' + \varepsilon)^{-m+\frac{1}{2}}$$

using again u < u'. The third term

$$\int_{v \vee v'}^{t} d\tau \int_{u'}^{v \vee v'} ds (\tau - u + \varepsilon)^{-m} (\tau - u' + \varepsilon)^{-m}$$

$$= \int_{v \vee v'}^{t} d\tau (\tau - u + \varepsilon)^{-m} (\tau - u' + \varepsilon)^{-m} (v \vee v' - u')$$

$$\leq \int_{v \vee v'}^{t} d\tau (\tau - u + \varepsilon)^{-m} (\tau - u' + \varepsilon)^{-m} (\tau - u')$$

$$\leq \int_{0}^{t} d\tau \Theta(\tau - v \vee v') (\tau - u + \varepsilon)^{-m + \frac{1}{2}} (\tau - u' + \varepsilon)^{-m + \frac{1}{2}}.$$

Finally

$$\int_{v\vee v'}^{t} d\tau \int_{v\vee v'} \tau ds (\tau - u + \varepsilon)^{-m} (\tau - u' + \varepsilon)^{-m}$$

$$= \int_{v\vee v'}^{t} d\tau (\tau - u + \varepsilon)^{-m} (\tau - u' + \varepsilon)^{-m} (\tau - v \vee v')$$

$$\leq \int_{v\vee v'}^{t} d\tau (\tau - u + \varepsilon)^{-m} (\tau - u' + \varepsilon)^{-m} (\tau - u')$$

$$\leq \int_{0}^{t} d\tau \Theta(\tau - v \vee v') (\tau - u + \varepsilon)^{-m + \frac{1}{2}} (\tau - u' + \varepsilon)^{-m + \frac{1}{2}}.$$

Combining this lemma with the previous one we conclude that for all kernel functions G_k with $k \geq 2$ arguments

$$\lim_{\varepsilon \to +0} r^4 \|\operatorname{Sym} G_k\|^2 \le \lim_{\varepsilon \to +0} r^4 \|G_k\|^2 \le \lim_{\varepsilon \to +0} r^4 \|H_k\|^2 = 0,$$

i.e. we have shown

Proposition 3.2.

$$ms - \lim_{\varepsilon \to +0} \langle rM_i, rM_k \rangle_t = \delta_{ik} \frac{n_k}{n} k_n^2 t.$$

Proof of Theorem 2.2. The above limit is clearly (up to constants) the quadratic variation of a Brownian motion. Theorem 2.2 is then a consequence of e.g. Theorem VIII.3.11 in Ref. 16, which in the present case of continuous martingales requires convergence in probability of quadratic variations for a dense set of t.

To control the remaining terms $N_t(d, \mathbf{n}, \varepsilon)$ in the chaos expansion we observe that

$$||N_{t}(d, \mathbf{n}, \varepsilon)||_{(L^{2})}^{2} = \mathbf{n}!||(t + \varepsilon)^{-\varkappa} - (v + \varepsilon)^{-\varkappa} - (t - u + \varepsilon)^{-\varkappa}||_{L^{2}([0, t]^{n})}^{2}$$

$$\leq \mathbf{n}!(||(t + \varepsilon)^{-\varkappa}||_{L^{2}}^{2} + ||(v + \varepsilon)^{-\varkappa}||_{L^{2}}^{2} + ||(t - u + \varepsilon)^{-\varkappa}||_{L^{2}}^{2}).$$

The first of these three norms is equal to $t^n(t+\varepsilon)^{-2\varkappa}$, i.e. O(1). The second one is

$$\int_{[0,t]^n} d^n s(v+\varepsilon)^{-2\varkappa} = n \int_0^t dv \frac{v^{n-1}}{(v+\varepsilon)^{n+d-4}} = n\varepsilon^{4-d} \int_0^{t/\varepsilon} dx \frac{x^{n-1}}{(x+1)^{n+d-4}}$$

$$= \begin{cases} O(1) & \text{for } d=3\\ O(\ln \varepsilon) & \text{for } d=4\\ O(\varepsilon^{4-d}) & \text{for } d>4 \end{cases}$$

which are suppressed by the renormalization

$$r^{2}(\varepsilon) = \begin{cases} |\ln \varepsilon|^{-1} & \text{for } d = 3, \\ \varepsilon^{d-3} & \text{for } d > 3. \end{cases}$$

A similar estimate holds for the third term of N, so that we have shown

Lemma 3.5.

$$ms - \lim_{\varepsilon \to +0} r(\varepsilon) N_t(d, \mathbf{n}, \varepsilon) = 0.$$

In fact the convergence is uniform in any finite t-interval. Next we show

Lemma 3.6. The processes $\{r(\varepsilon)N\cdot(d,\mathbf{n},\varepsilon):\varepsilon>0\}$, $\{r(\varepsilon)M\cdot(d,\mathbf{n},\varepsilon):\varepsilon>0\}$ and their linear combinations are tight.

Proof. A criterion for tightness of M (following p. 64 of Ref. 17) is

$$\sup_{\varepsilon>0} E|rM_t - rM_s|^{\alpha} \le C_T (t-s)^{1+\beta}, \qquad (15)$$

 $\forall T > 0 \text{ and } 0 \leq s < t \leq T \text{ and for some positive constants } \alpha, \beta \text{ and } C_T.$

As a first step we show

$$\sup_{\varepsilon>0} E|rM_t - rM_s|^2 \le C_T(t-s) \tag{16}$$

by direct calculation:

$$E|M_t - M_s|^2 = \mathbf{n}! n \int_s^t dv \int_0^v d^{n-1} s(v - u + \varepsilon)^{-2\varkappa}.$$

The second integral may be estimated as follows:

$$\int_0^v d^{n-1}s(v-u+\varepsilon)^{-2\varkappa} = (n-1)\int_0^v du \frac{(v-u)^{n-2}}{(v-u+\varepsilon)^{n+d-4}}$$

$$\leq (n-1)\varepsilon^{3-d}\int_0^{v/\varepsilon} dx \frac{1}{(x+1)^{d-2}}$$

$$= (n-1)\begin{cases} \ln(v+\varepsilon) - \ln \varepsilon & \text{for } d=3, \\ O(\varepsilon^{3-d}) & \text{for } d>3. \end{cases}$$

Renormalization of this estimate by the factor r^2 makes it bounded on [0, T], and the integral over v gives the desired estimate (16), i.e.

$$||rM_t - rM_s||_2^2 \le c_T(t-s)$$
. (17)

Note that the kernel functions of K are all dominated by those of M. Hence we have also, possibly with a larger constant c_T , the estimate

$$||rK_t - rK_s||_2^2 \le c_T(t-s)$$
. (18)

By the hypercontractivity of the Ornstein–Uhlenbeck semigroup (see e.g. p. 235 of Ref. 14), one has for nth order white noise monomials $\varphi \in (L^2)$, and any $\alpha > 2$

$$\|\varphi\|_{\alpha}^{\alpha} \le c_{n,\alpha} \|\varphi\|_{2}^{\alpha}.$$

For $\varphi = rK_t - rK_s$ and using the above estimate for the 2-norm, we get

$$E|rK_t - rK_s|^{\alpha} \le C_T(t-s)^{\alpha/2}$$

as required to ensure tightness. The estimates for rN etc. are of the same kind.

Proof of Theorem 2.3. We need to consider

$$rK = rM + rN$$

knowing that, as $\varepsilon \to +0$, the rK are tight by Lemma 3.6, the rM converge in law, and the rN_t go to zero in mean square. The latter two facts are sufficient, via the Cramér–Wold device (see e.g. p. 61 of Ref. 17), for finite dimensional convergence of rK; tightness then implies convergence in law.

Acknowledgments

This work was partial supported by PRAXIS XXI and FEDER. L.S. would like to express his appreciation for an inspiring discussion with L. Chen, for a very helpful remark of J. Potthoff, and for the splendid hospitality of the Grupo de Fisica Matemática da Universidade de Lisboa, under the auspices of a "Marie Curie" fellowship (ERBFMBICT 971949).

References

- 1. R. F. Bass and D. Khoshnevisan, Intersection local times and Tanaka formulas, Ann. Inst. H. Poincaré 29 (1993) 419–451.
- 2. Th. Deck, J. Potthoff and G. Våge, A review of white noise analysis from a probabilistic standpoint, Acta Appl. Math. 48 (1997) 91–112.
- C. Drumond, M. de Faria and L. Streit, The renormalization of self intersection local times II. The renormalized local times, in preparation.
- 4. A. Dvoretzky, P. Erdös and S. Kakutani, Double points of paths of Brownian motion in the plane, Bull. Res. Council Israel Sect. F3 (1954) 364-371.
- 5. A. Dvoretzky, P. Erdös and S. Kakutani, Double points of paths of Brownian motion in n-space, Acta Sci. math. Szeged 12 (1950) 75–81.
- 6. A. Dvoretzky, P. Erdös, S. Kakutani and S. J. Taylor, Triple points of the Brownian motion in 3-space, Proc. Cambridge Philos. Soc. 53 (1957) 856–862.
- E. B. Dynkin, Polynomials of the occupation field and related random fields, J. Funct. Anal. 58 (1984) 20-52.
- 8. E. B. Dynkin, Self-intersection gauge for random walks and for Brownian motion. Ann. Probab. 16 (1988) 1–57.
- 9. E. B. Dynkin, Regularized self-intersection local times of planar Brownian motion. Ann. Probab. 16 (1988) 58–73.
- M. de Faria, T. Hida, L. Streit and H. Watanabe, Intersection local times as generalized white noise functionals, Acta Appl. Math. 46 (1997) 351-362.
- 11. D. Geman, J. Horowitz and J. Rosen, A local time analysis of intersections of Brownian paths in the plane, Ann. Probab. 12 (1984) 86–107.
- 12. I. S. Gradshteyn and I. M. Ryshik, Table of Integrals, Series, and Products (Academic Press, 1980), corrected and enlarged ed.
- 13. T. Hida, **Brownian Motion** (Springer, 1980).
- 14. T. Hida, H. H. Kuo, J. Potthoff and L. Streit, White Noise-An Infinite Dimensional Calculus (Kluwer, 1993).
- 15. P. Imkeller, V. Perez-Abreu and J. Vives, Chaos expansions of double intersection local times of Brownian motion in R^d and renormalization, Stoch. Proc. Appl. 56 (1995) 1-34.
- J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes (Springer, 1987).
- 17. I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus (Springer, 1991), 2nd ed.
- 18. J. F. Le Gall, Sur le temps local d'intersection du mouvement Brownien plan et la méthode de renormalisation de Varadhan, Sém. de Prob. XIX, 1983/84, Lecture Notes in Math., Vol. 1123 (Springer, 1985), pp. 314–331.
- 19. J. F. Le Gall, Sur la saucisse de Wiener et les points multiples du mouvement brownien, Ann. Probab. 14 (1986) 1219–1244.
- 20. P. Lévy, Le mouvement Brownien plan, Amer. J. Math. 62 (1940) 440-487.

- 21. T. J. Lyons, The critical dimension at which quasi-every Brownian motion is selfavoiding, Adv. Appl. Probab. (1986) 87-99.
- 22. D. Nualart and J. Vives, Smoothness of Brownian local times and related functionals, Potential Anal. 1 (1992) 257–263.
- 23. D. Nualart and J. Vives, Chaos expansion and local times, Publ. Math. 36 (2) (1992) 827-836.
- 24. D. Nualart and J. Vives, Smoothness of local times and related Wiener functionals, in Chaos Expansions, Multiple Wiener-Ito Integrals and Their Applications, eds. C. Houdré and V. Pérez-Abreu (CRC Press, 1994).
- M. D. Penrose, On the existence of self-intersections for quasi-every Brownian path in space, Ann. Probab. 17 (1989) 482–502.
- V. Perez-Abreu, Chaos expansions: A review, CIMAT preprint, 1993.
- 27. J. Rosen, A local time approach to the self-intersections of Brownian paths in space, Comm. Math. Phys. 88 (1983) 327-338.
- J. Rosen, Tanaka's formula and renormalisation for intersections of planar Brownian motion, Ann. Probab. 14 (1986) 1425–1251.
- J. Rosen, A renormalized local time for multiple intersections of planar Brownian motion, Sém. de Prob. XX, 1984/85, Lecture Notes in Math., Vol. 1204 (Springer 1986), pp. 515–531.
- 30. N. R. Shieh, White noise analysis and Tanaka formula for intersections of planar Brownian motion, Nagoya Math. J. 122 (1991) 1-17.
- 31. L. Streit and W. Westerkamp, A generalization of the characterization theorem for generalized functionals of white noise, in Dynamics of Complex and Irregular Systems, eds. Ph. Blanchard et al. (World Scientific, 1993.)
- 32. K. Symanzik, Euclidean quantum field theory, in Local Quantum Theory, ed. R. Jost (Academic Press, 1969).
- S. R. S. Varadhan, Appendix to "Euclidean quantum field theory" by K. Symanzik, in Local Quantum Theory, ed. R. Jost (Academic Press, 1969).
- 34. H. Watanabe, The local time of self-intersections of Brownian motions as generalized Brownian functionals, Lett. Math. Phys. 23 (1991) 1–9.
- 35. W. Werner, Sur les singularités des temps locaux d'intersection du mouvement Brownien plan, Ann. Inst. H. Poincaré **29** (1993) 391–418.
- J. Westwater, On Edward's model for long polymer chains, Comm. Math. Phys. 72 (1980) 131–174.
- 37. R. Wolpert, Wiener path intersection and local time, J. Funct. Anal. 30 (1978) 329 - 340.
- 38. M. Yor, Compléments aux formules de Tanaka-Rosen, Sém. de Prob. XIX, 1983/84, Lecture Notes in Math., Vol. 1123 (Springer, 1985), pp. 332-348.
- M. Yor, Renormalisation et convergence en loi pour les temps locaux d'intersection du mouvement Brownien dans R³, **Sém. de Prob. XIX** 1983/84, Lecture Notes in Math., Vol. 1123 (Springer, 1985), pp. 350–365.