Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Noncontact Automatic Water-Level Assessment and Prediction in an Urban Water Stream Channel of a Volcanic Island Using Deep Learning
    Publication . Mendonça, Fabio; Mostafa, Sheikh Shanawaz; Dias, Fernando Morgado; Azevedo, Joaquim Amândio; Ravelo-García, Antonio G.; Navarro-Mesa, Juan L.
    Traditional methods for water-level measurement usually employ permanent structures, such as a scale built into the water system, which is costly and laborious and can wash away with water. This research proposes a low-cost, automatic water-level estimator that can appraise the level without disturbing water flow or affecting the environment. The estimator was developed for urban areas of a volcanic island water channel, using machine learning to evaluate images captured by a low-cost remote monitoring system. For this purpose, images from over one year were collected. For better performance, captured images were processed by converting them to a proposed color space, named HLE, composed of hue, lightness, and edge. Multiple residual neural network architectures were examined. The best-performing model was ResNeXt, which achieved a mean absolute error of 1.14 cm using squeeze and excitation and data augmentation. An explainability analysis was carried out for transparency and a visual explanation. In addition, models were developed to predict water levels. Three models successfully forecasted the subsequent water levels for 10, 60, and 120 min, with mean absolute errors of 1.76 cm, 2.09 cm, and 2.34 cm, respectively. The models could follow slow and fast transitions, leading to a potential flooding risk-assessment mechanism.
  • Visual Explanations of Deep Learning Architectures in Predicting Cyclic Alternating Patterns Using Wavelet Transforms
    Publication . Gupta, Ankit; Mendonça, Fabio; Mostafa, Sheikh Shanawaz; Ravelo-García, Antonio G.; Dias, Fernando Morgado
    : Cyclic Alternating Pattern (CAP) is a sleep instability marker defined based on the ampli tude and frequency of the electroencephalogram signal. Because of the time and intensive process of labeling the data, different machine learning and automatic approaches are proposed. However, due to the low accuracy of the traditional approach and the black box approach of the machine learning approach, the proposed systems remain untrusted by the physician. This study contributes to accurately estimating CAP in a Frequency-Time domain by A-phase and its subtypes prediction by transforming the monopolar deviated electroencephalogram signals into corresponding scalograms. Subsequently, various computer vision classifiers were tested for the A-phase using scalogram images. It was found that MobileNetV2 outperformed all other tested classifiers by achieving the average accuracy, sensitivity, and specificity values of 0.80, 0.75, and 0.81, respectively. The MobileNetV2 trained model was further fine-tuned for A-phase subtypes prediction. To further verify the visual ability of the trained models, Gradcam++ was employed to identify the targeted regions by the trained network. It was verified that the areas identified by the model match the regions focused on by the sleep experts for A-phase predictions, thereby proving its clinical viability and robustness. This motivates the development of novel deep learning based methods for CAP patterns predictions.
  • A Systematic Review of Detecting Sleep Apnea Using Deep Learning
    Publication . Mostafa, Sheikh Shanawaz; Mendonça, Fábio; Ravelo-García, Antonio G.; Dias, Fernando Morgado
    Sleep apnea is a sleep related disorder that significantly affects the population. Polysomnography, the gold standard, is expensive, inaccessible, uncomfortable and an expert technician is needed to score. Numerous researchers have proposed and implemented automatic scoring processes to address these issues, based on fewer sensors and automatic classification algorithms. Deep learning is gaining higher interest due to database availability, newly developed techniques, the possibility of producing machine created features and higher computing power that allows the algorithms to achieve better performance than the shallow classifiers. Therefore, the sleep apnea research has currently gained significant interest in deep learning. The goal of this work is to analyze the published research in the last decade, providing an answer to the research questions such as how to implement the different deep networks, what kind of pre-processing or feature extraction is needed, and the advantages and disadvantages of different kinds of networks. The employed signals, sensors, databases and implementation challenges were also considered. A systematic search was conducted on five indexing services from 2008–2018. A total of 255 papers were found and 21 were selected by considering the inclusion and exclusion criteria, using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach.