Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Green polymers toward nanobiotechnology(I): synthesis of glycopolypeptides and their analogues
    Publication . Wang, Zhao; Neves, Ana Rute; Olim, Filipe; Tomás, Helena; Tang, Shi; Sheng, Ruilong
    Harnessing natural-based renewable molecular resources to construct functional synthetic green polymers is a promising research frontier at the interface of sustainable/green chemistry, polymer chemistry and nanobiotechnology. As natural glycoprotein mimics/analogues and biocompatible building blocks of nanobio- materials, synthetic functional glycopolypeptides and their structural/functional analogues have attracted great attentions in recent years. This mini-perspective article reviewed current synthetic strategies and methods of glycopolypeptides and their analogues. The pros and cons of the synthesis protocols were discussed, moreover, possible future perspectives in this field were also stated.
  • Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors
    Publication . Shan, Yuebin; Luo, Ting; Peng, Chen; Sheng, Ruilong; Cao, Amin; Cao, Xueyan; Shen, Mingwu; Guo, Rui; Tomás, Helena; Shi, Xiangyang
    Development of highly efficient nonviral gene delivery vectors still remains a great challenge. In this study, we report a new gene delivery vector based on dendrimer-entrapped gold nanoparticles (Au DENPs) with significantly higher gene transfection efficiency than that of dendrimers without AuNPs entrapped. Amine-terminated generation 5 poly(amidoamine) (PAMAM) dendrimers (G5.NH(2)) were utilized as templates to synthesize AuNPs with different Au atom/dendrimer molar ratios (25:1, 50:1, 75:1, and 100:1, respectively). The formed Au DENPs were used to complex two different pDNAs encoding luciferase (Luc) and enhanced green fluorescent protein (EGFP), respectively for gene transfection studies. The Au DENPs/pDNA polyplexes with different N/P ratios and compositions of Au DENPs were characterized by gel retardation assay, light scattering, zeta potential measurements, and atomic force microscopic imaging. We show that the Au DENPs can effectively compact the pDNA, allowing for highly efficient gene transfection into the selected cell lines as demonstrated by both Luc assay and fluorescence microscopic imaging of the EGFP expression. The transfection efficiency of Au DENPs with Au atom/dendrimer molar ratio of 25:1 was at least 100 times higher than that of G5.NH(2) dendrimers without AuNPs entrapped at the N/P ratio of 2.5:1. The higher gene transfection efficiency of Au DENPs is primarily due to the fact that the entrapment of AuNPs helps preserve the 3-dimensional spherical morphology of dendrimers, allowing for more efficient interaction between dendrimers and DNA. With the less cytotoxicity than that of G5.NH(2) dendrimers demonstrated by thiazoyl blue tetrazolium bromide assay and higher gene transfection efficiency, it is expected that Au DENPs may be used as a new gene delivery vector for highly efficient transfection of different genes for various biomedical applications.