Loading...
1 results
Search Results
Now showing 1 - 1 of 1
- Model combination in neural-based forecastingPublication . Freitas, Paulo S. A.; Rodrigues, António J. L.This paper discusses different ways of combining neural predictive models or neural-based forecasts. The proposed approaches consider Gaussian radial basis function networks, which can be efficiently identified and estimated through recursive/adaptive methods. The usual framework for linearly combining estimates from different models is extended, to cope with the case where the forecasting errors from those models are correlated. A prefiltering methodology is pro posed, addressing the problems raised by heavily nonstationary time series. Moreover, the paper discusses two approaches for decision-making from forecasting models: either inferring decisions from combined predictive estimates, or combining prescriptive solutions derived from different forecasting models.