Logo do repositório
 
A carregar...
Logótipo do projeto
Projeto de investigação

Biosignals Training Methods based on Biosignals Monitoring

Autores

Publicações

Automatic cognitive fatigue detection using wearable fNIRS and machine learning
Publication . Varandas, Rui; Lima, Rodrigo; Bermúdez i Badia, Sergi; Silva, Hugo; Gamboa, Hugo
Wearable sensors have increasingly been applied in healthcare to generate data and monitor patients unobtrusively. Their application for Brain–Computer Interfaces (BCI) allows for unobtru sively monitoring one’s cognitive state over time. A particular state relevant in multiple domains is cognitive fatigue, which may impact performance and attention, among other capabilities. The monitoring of this state will be applied in real learning settings to detect and advise on effective break periods. In this study, two functional near-infrared spectroscopy (fNIRS) wearable devices were employed to build a BCI to automatically detect the state of cognitive fatigue using machine learning algorithms. An experimental procedure was developed to effectively induce cognitive fatigue that included a close-to-real digital lesson and two standard cognitive tasks: Corsi-Block task and a concentration task. Machine learning models were user-tuned to account for the individual dynamics of each participant, reaching classification accuracy scores of around 70.91 ± 13.67%. We concluded that, although effective for some subjects, the methodology needs to be individually validated before being applied. Moreover, time on task was not a particularly determining factor for classification, i.e., to induce cognitive fatigue. Further research will include other physiological signals and human–computer interaction variables.

Unidades organizacionais

Descrição

Palavras-chave

Contribuidores

Financiadores

Entidade financiadora

Fundação para a Ciência e a Tecnologia

Programa de financiamento

OE

Número da atribuição

PD/BDE/150304/2019

ID