Repository logo
 
Loading...
Project Logo
Research Project

Laboratory of Robotics and Engineering Systems

Authors

Publications

Physical Fitness and Body Composition of Youth Referees in Invasion Games
Publication . Gouveia, Élvio Rúbio; Lopes, Hélder; Nascimento, Marcelo de Maio; Clemente, Filipe Manuel; Sarmento, Hugo; Ihle, Andreas; Ferrari, Gerson; Luz, Pedro; Caldeira, Henrique; Marques, Adilson
Background: Referees’ activity can be an instrument for training students with an impact on health-related physical fitness (PF). This study aimed to investigate the differences in PF and body composition between students without sports practice (G1), students with regular sports practice (G2), and student referees in team invasion games (G3). Methods: This study followed a cross-sectional design. The sample comprised 45 male students between 14 and 20 years old (16.40 ± 1.85). Three groups (G1, G2, and G3) of 15 participants each were selected. PF was assessed by a 20 m shuttle run, change-of-direction test, and standing long jump. Body composition was determined by body mass index (BMI; kg/m2 ) and the percentage of body fat (%BF) predicted by skinfold. Results: After controlling for age as a covariate, the block of variables used to characterize PF was statistically different between sports practice groups favoring student referees (p < 0.001; r = 0.26). Similar results were achieved for body composition (i.e., BMI and %BF) (p < 0.001; r = 0.17). However, when the dependent variables were evaluated separately, there were only differences between groups in %BF (p = 0.007; r = 0.21). Student referees had statistically significantly lower values than the remaining groups. Conclusion: Refereeing activity benefits PF related to health and performance, including body composition. This study confirms the benefits related to health in children and adolescents who are involved in refereeing activity
Facial video based physiological variables estimation in dark environments
Publication . Gupta, Ankit; Dias, Fernando Manuel Rosmaninho Morgado Ferrão; Ravelo García, Antonio Gabriel
As estimativas de parâmetros fisiológicos desempenham um papel relevante na de terminação do estado de saúde de um indivíduo. Entre esses parâmetros, a fre quência cardíaca e a saturação de oxigénio têm sido amplamente utilizadas para monitorização da saúde durante exames médicos, cirurgias, diagnóstico de distúr bios do sono e em unidades de cuidados intensivos. As técnicas de referência para estimar esses parâmetros são a eletrocardiografia e a fotopletismografia. Ambas são técnicas baseadas em contacto e, portanto, podem causar desconforto ao paciente em cenários como monitorização prolongada e pele sensível ou queimada. Assim, a fotopletismografia remota foi introduzida como uma variante sem contacto da foto pletismografia. Esta técnica extrai o sinal de pulso do volume sanguíneo das sequên cias espaço-temporais da região de interesse, seguida pela estimativa da frequência cardíaca. Por outro lado, as estimativas da saturação de oxigénio são realizadas us ando o método de razão de razões usando os canais vermelho e azul. Os métodos existentes sem contacto foram projetados para condições de luz ambiente. Alguns métodos desenvolvidos para ambientes escuros usaram câmaras infravermelhas, que são caras, e os espectros resultantes têm força pulsátil inferior aos espectros visíveis. Portanto, esta tese investiga o potencial dos espectros visíveis para medidas fisiológ icas em ambientes escuros (iluminância 1,0 lux). Especificamente, esta tese tem três contribuições principais: primeiro, um novo método de estimativa da frequência cardíaca baseado na análise de componentes independentes subcompleta, que foi de senvolvido e testado sob diferentes condições em tempo real, e segundo, um conjunto de dados "Dark-Video" abrangendo participantes de diferentes etnias e, finalmente, uma nova arquitetura de aprendizagem profunda para aprimoramento de imagens escuras que também foi proposta para facilitar medições fisiológicas nos ambientes escuros mencionados acima (ou seja, métodos de estimativa em cascata pelo apri moramento de imagens). Diversas experiências foram conduzidas para a análise de desempenho usando métricas de desempenho selecionadas criticamente provaram a superioridade dos métodos desenvolvidos e também exibiram o seu potencial de serem clinicamente viáveis. A direção futura desta trabalho visa implementar esses métodos para cenários como monitorização do sono sem contacto ou monitorização durante a condução noturna.
Association between Body Composition, Physical Activity Profile, and Occurrence of Knee and Foot Postural Alterations among Young Healthy Adults
Publication . Ashraf, Sadaf; Viveiros, Roberto; França, Cíntia; Ornelas, Rui Trindade; Rodrigues, Ana
Knee and foot deformities refer to structural abnormalities in the knee and foot bones, joints, ligaments, or muscles. Various factors, including genetics, injury, disease, or excessive use, can cause these deformities. These musculoskeletal conditions can significantly impact individuals’ quality of life. This study examined foot and knee deformities in 231 young healthy adults (165 men, 66 women) aged 22.6 ± 4.9 years and their association with physical activity and body composition. The postural assessment was performed by two Physiotherapists, with the subject standing in three views: side, anterior, and posterior. Physical activity (Baecke’s Habitual Physical Activity Questionnaire) and body composition (InBody 770) were assessed. Results showed that the most common foot deformity was pes planus, while the genu recurvatum was the most common knee deformity among the individuals. Physical activity level was negatively associated with knee and foot deformities. Conversely, body composition differed with the presence of genu recurvatum. These findings present a starting point to understand the occurrence of knee and foot postural alterations according to the individuals’ body composition and physical activity profiles, which could support the deployment of tailored interventions among healthy adults. In addition, early detection of postural changes is crucial in mitigating their negative long-term impact on physical well-being.
Sleep Analysis by Evaluating the Cyclic Alternating Pattern A Phases
Publication . Alves, Arturo; Mendonça, Fábio; Mostafa, Sheikh Shanawaz; Dias, Fernando Morgado
Sleep is a complex process divided into different stages, and a decrease in sleep quality can lead to adverse health-related effects. Therefore, diagnosing and treating sleep-related conditions is crucial. The Cyclic Alternating Pattern (CAP) is an indicator of sleep instability and can assist in assessing sleep-related disorders such as sleep apnea. However, manually detecting CAP-related events is time-consuming and challenging. Therefore, automatic detection is needed. Despite their usually higher performance, the utilization of deep learning solutions may result in models that lack interpretability. Addressing this issue can be achieved through the implementation of feature-based analysis. Nevertheless, it becomes necessary to identify which features can better highlight the patterns associated with CAP. Such is the purpose of this work, where 98 features were computed from the patient’s electroencephalographic signals and used to train a neural network to identify the CAP activation phases. Feature selection and model tuning with a genetic algorithm were also employed to improve the classification results. The proposed method’s performance was found to be among the best state-of-the-art works that use more complex models.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDP/50009/2020

ID