Browsing by Author "Cunha, M. D."
Now showing 1 - 10 of 25
Results Per Page
Sort Options
- 3D modelling of heating of thermionic cathodes by high-pressure arc plasmasPublication . Benilov, M. S.; Carpaij, M.; Cunha, M. D.Numerical investigation of steady-state interaction of a high-pressure argon plasma with a cylindrical tungsten cathode is reported. A whole ‘zoo’ of very diverse modes of current transfer is revealed. Detailed results are given for the first five (three-dimensional) 3D spot modes, four of them branching off from the diffuse mode and one from the first axially symmetric spot mode. Divergences in the general pattern of solutions, which have been present in preceding works, are resolved. Hypotheses on stability of steady-state solutions, available in the literature, are analysed. It is found that these hypotheses provide an explanation of the fact that the transition between diffuse and spot modes is difficult to reproduce in the experiment but they do not explain the indication that it is the low-voltage branch of the first 3D spot mode that seems to occur in the experiment. Thus, the question of stability of steady-state solutions remains open: an accurate stability analysis, as well as additional experimental information is required.
- Account of near-cathode sheath in numerical models of high-pressure arc dischargesPublication . Benilov, M. S.; Almeida, N. A.; Baeva, M.; Cunha, M. D.; Benilova, L. G.; Uhrlandt, D.Three approaches to describing the separation of charges in near-cathode regions of highpressure arc discharges are compared. The first approach employs a single set of equations, including the Poisson equation, in the whole interelectrode gap. The second approach employs a fully non-equilibrium description of the quasi-neutral bulk plasma, complemented with a newly developed description of the space-charge sheaths. The third, and the simplest, approach exploits the fact that significant power is deposited by the arc power supply into the near-cathode plasma layer, which allows one to simulate the plasma–cathode interaction to the first approximation independently of processes in the bulk plasma. It is found that results given by the different models are generally in good agreement, and in some cases the agreement is even surprisingly good. It follows that the predicted integral characteristics of the plasma–cathode interaction are not strongly affected by details of the model provided that the basic physics is right.
- Analysing bifurcations encountered in numerical modelling of current transfer to cathodes of dc glow and arc dischargesPublication . Almeida, P. G. C.; Benilov, M. S.; Cunha, M. D.; Faria, M. J.Bifurcations and/or their consequences are frequently encountered in numerical modelling of current transfer to cathodes of gas discharges, also in apparently simple situations, and a failure to recognize and properly analyse a bifurcation may create difficulties in the modelling and hinder the understanding of numerical results and the underlying physics. This work is concerned with analysis of bifurcations that have been encountered in the modelling of steady-state current transfer to cathodes of glow and arc discharges. All basic types of steady-state bifurcations (fold, transcritical, pitchfork) have been identified and analysed. The analysis provides explanations to many results obtained in numerical modelling. In particular, it is shown that dramatic changes in patterns of current transfer to cathodes of both glow and arc discharges, described by numerical modelling, occur through perturbed transcritical bifurcations of first- and second-order contact. The analysis elucidates the reason why the mode of glow discharge associated with the falling section of the current–voltage characteristic in the solution of von Engel and Steenbeck seems not to appear in 2D numerical modelling and the subnormal and normal modes appear instead. A similar effect has been identified in numerical modelling of arc cathodes and explained.
- Bifurcation points in the theory of axially symmetric arc cathodesPublication . Benilov, M. S.; Cunha, M. D.Steady-state current transfer from arc plasmas to axially symmetric cathodes is treated in the framework of the model of nonlinear surface heating. An approach is developed to calculate the bifurcation points at which three-dimensional spot-mode solutions branch off from solutions describing the diffuse mode and axially symmetric spot modes. In particular, the first bifurcation point positioned on the diffuse-mode solution has been calculated, and thus its stability limit, i.e., the current below which the diffuse mode becomes unstable. Calculation results are given for the case of a tungsten cathode in the form of a circular cylinder in high pressure plasmas. The effect produced on the stability limit by variations of control parameters ~cathode dimensions, work function of the cathode material, plasma-producing gas, and its pressure! is studied and found to conform to trends observed experimentally. The stability limit is found to be much more sensitive to variations of control parameters than characteristics of the diffuse mode are, the strongest effect being pro duced by variations of cathode dimensions and of the work function of the cathode material. This finding conforms to the fact that the diffuse-spot transition is difficult to reproduce in the experiment.
- Comparing two non-equilibrium approaches to modelling of a free-burning arcPublication . Baeva, M.; Uhrlandt, D.; Benilov, M. S.; Cunha, M. D.Two models of high-pressure arc discharges are compared with each other and with experimental data for an atmospheric-pressure free-burning arc in argon for arc currents of 20–200 A. The models account for space-charge effects and thermal and ionization non-equilibrium in somewhat different ways. One model considers space-charge effects, thermal and ionization non-equilibrium in the near-cathode region and thermal non-equilibrium in the bulk plasma. The other model considers thermal and ionization non-equilibrium in the entire arc plasma and space-charge effects in the near-cathode region. Both models are capable of predicting the arc voltage in fair agreement with experimental data. Differences are observed in the arc attachment to the cathode, which do not strongly affect the near-cathode voltage drop and the total arc voltage for arc currents exceeding 75 A. For lower arc currents the difference is significant but the arc column structure is quite similar and the predicted bulk plasma characteristics are relatively close to each other.
- Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimesPublication . Almeida, N. A.; Cunha, M. D.; Benilov, M. S.Numerical modelling of near-anode layers in arc discharges in several gases (Ar, Xe and Hg) is performed in a wide range of current densities, anode surface temperatures, and plasma pressures. It is shown that the density of energy flux to the anode is only weakly affected by the anode surface temperature and varies linearly with the current density. This allows one to interpret the results in terms of anode heating voltage (volt equivalent of the heat flux to the anode). The computed data may be useful in different ways. An example considered in this work concerns the evaluation of thermal regime of anodes in the shape of a thin rod operating in the diffuse mode. Invoking the model of nonlinear surface heating for cathodes, one obtains a simple and free of empirical parameters model of thin rod electrodes applicable to dc and ac high-pressure arcs provided that no anode spots are present. The model is applied to a variety of experiments reported in the literature and a good agreement with the experimental data found.
- Computing DC discharges in a wide range of currents with COMSOL MultiPhysics: time-dependent solvers vs. stationary solversPublication . Almeida, P. G. C.; Benilov, M. S.; Bieniek, M. S.; Cunha, M. D.; Gomes, J. G. L.; Kaufmann, H. T. CostaThe benefits of the usage of stationary over time-dependent solvers of COMSOL Multiphysics in the modelling of DC discharges are explored and demonstrated using as examples glow and high pressure arc discharges; in particular, it is investigated whether time-dependent solvers can be used for a systematic computation of different modes of these discharges. It has been found that most modes of both glow and high-pressure arc discharges cannot be computed in the whole range of their existence by a time-dependent solver. Further, time-dependent solvers are unsuitable for a computation of all the states belonging to the retrograde sections of the current-voltage characteristics of the modes, so the discharge manifests hysteresis, which, in principle, can be observed in the experiment.
- Detailed numerical simulation of cathode spots in high-current vacuum arcsPublication . Kaufmann, H. T. C.; Cunha, M. D.; Benilov, M. S.; Hartmann, W.; Wenzel, N.A detailed numerical model of cathode spots in high-current vacuum arcs is given. The model provides a complete description of all phases of life of an individual spot taking into account the presence of metal vapor left over from a previous explosion, the interaction of the vaporized plasma from the cathode spot with the cathode surface, and Joule heat generation in the cathode body. Melting and motion of molten metal due to Lorentz force are also accounted for, together with surface tension effects and the pressure exerted by the plasma over the cathode surface. First results are presented and analyzed for copper cathodes with a protrusion and planar cathodes. Emphasis is given to the investigation of the effect of the vaporized plasma and of hydrodynamic processes. No thermal runaway is observed.
- Detailed numerical simulation of cathode spots in vacuum arcs: Interplay of different mechanisms and ejection of dropletsPublication . Kaufmann, H. T. C.; Cunha, M. D.; Benilov, M. S.; Hartmann, W.; Wenzel, N.A model of cathode spots in high-current vacuum arcs is developed with account of all the poten tially relevant mechanisms: the bombardment of the cathode surface by ions coming from a pre existing plasma cloud; vaporization of the cathode material in the spot, its ionization, and the inter action of the produced plasma with the cathode; the Joule heat generation in the cathode body; melting of the cathode material and motion of the melt under the effect of the plasma pressure and the Lorentz force and related phenomena. After the spot has been ignited by the action of the cloud (which takes a few nanoseconds), the metal in the spot is melted and accelerated toward the periph ery of the spot, with the main driving force being the pressure due to incident ions. Electron emis sion cooling and convective heat transfer are dominant mechanisms of cooling in the spot, limiting the maximum temperature of the cathode to approximately 4700–4800 K. A crater is formed on the cathode surface in this way. After the plasma cloud has been extinguished, a liquid-metal jet is formed and a droplet is ejected. No explosions have been observed. The modeling results conform to estimates of different mechanisms of cathode erosion derived from the experimental data on the net and ion erosion of copper cathodes.
- Formation of stationary and transient spots on thermionic cathodes and its preventionPublication . Almeida, Pedro G. C.; Benilov, M. S.; Cunha, M. D.Spots on cathodes of high-pressure arc discharges induced by a rapid increase in the arc current are studied numerically and experimentally. Appearance of stationary and transient spots is analysed in the context of the general pattern of steady-state modes of current transfer to thermionic cathodes and their stability. Transient spots are studied in experiments with COST-529 standard lamps. Modelling and experimental results are in reasonable agreement. A method to prevent formation of transient spots on cathodes of high-pressure arc discharges by means of short negative rectangular current pulses is proposed and validated both numerically and experimentally. Experimental indications are found that the main mechanism of blackening of burners of HID lamps that accompanies appearance of transient cathode spots is evaporation of the cathode material and not sputtering.
- «
- 1 (current)
- 2
- 3
- »