Browsing by Author "Mort, Mark E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Breeding systems in Tolpis (Asteraceae) in the Macaronesian islands: the Azores, Madeira and the CanariesPublication . Crawford, Daniel J.; Anderson, Gregory J.; Silva, Lurdes Borges; Sequeira, Miguel Menezes de; Moura, Mónica; Santos-Guerra, Arnoldo; Kelly, John K.; Mort, Mark E.Plants on oceanic islands often originate from self-compatible (SC) colonizers capable of seed set by self fertilization. This fact is supported by empirical studies, and is rooted in the hypothesis that one (or few) individuals could find a sexual population, whereas two or more would be required if the colonizers were self-incompatible (SI). However, a SC colonizer would have lower heterozygosity than SI colonizers, which could limit radiation and diver sification of lineages following establishment. Limited evidence suggests that several species-rich island lineages in the family Asteraceae originated from SI colonizers with some ‘‘leakiness’’ (pseudo-self-compatibility, PSC) such that some self-seed could be produced. This study of Tolpis (Asteraceae) in Macaronesia provides first reports of the breeding system in species from the Azores and Madeira, and additional insights into variation in Canary Islands. Tolpis from the Azores and Madeira are predominately SI but with PSC. This study suggests that the breeding sys tems of the ancestors were either PSC, possibly from a single colonizer, or from SI colonizers by multiple dis seminules either from a single or multiple dispersals. Long distance colonists capable of PSC combine the advantages of reproductive assurance (via selfing) in the establishment of sexual populations from even a single colonizer with the higher heterozygosity resulting from its origin from an outcrossed source population. Evolution of Tolpis on the Canaries and Madeira has generated diversity in breeding systems, including the origin of SC. Macaronesian Tolpis is an excellent system for studying breeding system evolution in a small, diverse lineage.
- Multiplexed-shotgun-genotyping data resolve phylogeny within a very recently derived insular lineagePublication . Mort, Mark E.; Crawford, Daniel J.; Kelly, John K.; Santos-Guerra, Arnoldo; Sequeira, Miguel Menezes de; Moura, Mónica; Caujapé-Castells, JuliPremise of the study: Endemic plants on oceanic islands have long served as model systems for studying patterns and processes of evolution. However, phylogenetic studies of island plants frequently illustrate a decoupling of molecular divergence and ecological/morphological diversity, resulting in phylogenies lacking the resolution required to interpret patterns of evolution in a phylogenetic context. The current study uses the primarily Macaronesian fl owering plant genus Tolpis to illustrate the utility of multiplexed shotgun genotyping (MSG) for resolving relationships at relatively deep (among archipelagos) and very shallow (within archipelagos) nodes in this small, yet diverse insular plant lineage that had not been resolved with other molecular markers. • Methods: Genomic libraries for 27 accessions of Macaronesian Tolpis were generated for genotyping individuals using MSG, a form of reduced-representation sequencing, similar to restriction-site-associated DNA markers (RADseq). The resulting data fi les were processed using the program pyRAD, which clusters MSG loci within and between samples. Phylogenetic analyses of the aligned data matrix were conducted using RAxML. • Key results: Analysis of MSG data recovered a highly resolved phylogeny with generally strong support, including the fi rst robust inference of relationships within the highly diverse Canary Island clade of Tolpis . • Conclusions: The current study illustrates the utility of MSG data for resolving relationships in lineages that have undergone recent, rapid diversifi cation resulting in extensive ecological and morphological diversity. We suggest that a similar approach may prove generally useful for other rapid plant radiations where resolving phylogeny has been diffi cult.