Browsing by Author "Silvestre, Armando J. D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Lipophilic extracts from banana fruit residues: a source of valuable phytosterolsPublication . Oliveira, Lúcia; Freire, Carmen S. R.; Silvestre, Armando J. D.; Cordeiro, NereidaThe chemical composition of the lipophilic extracts of unripe pulp and peel of banana fruit 'Dwarf Cavendish' was studied by gas chromatography-mass spectrometry. Fatty acids, sterols, and steryl esters are the major families of lipophilic components present in banana tissues, followed by diacylglycerols, steryl glucosides, long chain fatty alcohols, and aromatic compounds. Fatty acids are more abundant in the banana pulp (29-90% of the total amount of lipophilic extract), with linoleic, linolenic, and oleic acids as the major compounds of this family. In banana peel, sterols represent about 49-71% of the lipophilic extract with two triterpenic ketones (31-norcyclolaudenone and cycloeucalenone) as the major components. The detection of high amounts of steryl esters (469-24405 mg/kg) and diacylglycerols (119-878 mg/kg), mainly present in the banana peel extract, explains the increase in the abundance of fatty acids and sterols after alkaline hydrolysis. Several steryl glucosides were also found in significative amounts (273-888 mg/kg), particularly in banana pulp (888 mg/kg). The high content of sterols (and their derivatives) in the 'Dwarf Cavendish' fruit can open new strategies for the valorization of the banana residues as a potential source of high-value phytochemicals with nutraceutical and functional food additive applications.
- Phenolic profile of Sercial and Tinta Negra Vitis vinifera L. grape skins by HPLC–DAD–ESI-MSn: novel phenolic compounds in Vitis vinifera L. grapePublication . Perestrelo, Rosa Maria de Sá; Lu, Ying; Santos, Sónia A. O.; Silvestre, Armando J. D.; Neto, Carlos P.; Câmara, José S.; Rocha, Sílvia M.This study represents the first phytochemical research of phenolic components of Sercial and Tinta Negra Vitis vinifera L. The phenolic profiles of Sercial and Tinta Negra V. vinifera L. grape skins (white and red varieties, respectively) were established using high performance liquid chromatography–diode array detection–electrospray ionisation tandem mass spectrometry (HPLC–DAD–ESI-MSn), at different ripening stages (véraison and maturity). A total of 40 phenolic compounds were identified, which included 3 hydroxybenzoic acids, 8 hydroxycinnamic acids, 4 flavanols, 5 flavanones, 8 flavonols, 4 stilbenes, and 8 anthocyanins. For the white variety, in both ripening stages, hydroxycinnamic acids and flavonols were the main phenolic classes, representing about 80% of the phenolic composition. For red variety, at véraison, hydroxycinnamic acids and flavonols were also the predominant classes (71%), but at maturity, anthocyanins represented 84% of the phenolic composition. As far as we know, 10 compounds were reported for the first time in V. vinifera L. grapes, namely protocatechuic acid-glucoside, p-hydroxybenzoyl glucoside, caftaric acid vanilloyl pentoside, p-coumaric acid-erythroside, naringenin hexose derivate, eriodictyol-glucoside, taxifolin-pentoside, quercetin-glucuronide-glucoside, malylated kaempferol-glucoside, and resveratrol dimer. These novel V. vinifera L. grape components were identified based on their MSn fragmentation profile. This data represents valuable information that may be useful to oenological management and to valorise these varieties as sources of bioactive compounds.
- Structural characterization of lignin from leaf sheaths of “dwarf cavendish” banana plantPublication . Oliveira, Lúcia; Evtuguin, Dmitry V.; Cordeiro, Nereida; Silvestre, Armando J. D.; Silva, Artur M. S.; Torres, Isabel C.Dioxane lignin (DL) isolated from leaf sheaths of banana plant (Musa acuminata Colla var. cavendish) and in situ lignin were submitted to a comprehensive structural characterization employing spectroscopic (UV, FTIR, solid state 13C CP-MAS NMR, liquid state 13C and 1H NMR) and chemical degradation techniques (permanganate and nitrobenzene oxidation). Results obtained showed that banana plant leaf sheath lignin is of HGS type with a molar proportion of p-hydroxyphenyl (H)/guaiacyl (G)/syringyl (S) units of 12:25:63. Most of the H units in DL are terminal phenolic coumarates linked to other lignin substructures by benzyl and Cgamma-ester bonds in contrast to ferulates that are mainly ether linked to bulk lignin. It is proposed that banana plant leaf sheath lignin is chemically bonded to suberin-like components of cell tissues by ester linkages via essentially hydroxycinnamic acid residues. beta-O-4 structures (0.31/C6), the most abundant in DL, comprise mainly S units, whereas a significant proportion of G units is bonded by beta-5, 5-5', and 4-O-5' linkages contributing to ca. 80% of condensed structures in DL.