Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Eurya stigmosa (Theaceae), a new and extinct record for the Calabrian stage of Madeira Island (Portugal): 40Ar/39Ar dating, palaeoecological and oceanic island palaeobiogeographical implicationsPublication . Góis-Marques, Carlos A.; Mitchell, Ria L.; Nascimento, Lea de; Fernández-Palacios, José María; Madeira, José; Sequeira, Miguel Menezes deThe general dynamic model of oceanic island biogeography (GDM) predicts the immigration, speciation and extinction of terrestrial biota through geological time on oceanic islands. Additionally, the glacial sensitive model of island biogeography (GSM) also predicts extinction due to eustatic and climate change within islands. However, well-documented and natural pre-Holocene plant extinctions are almost unknown for oceanic islands worldwide. To test these predictions, we have sampled the Early Pleistocene Porto da Cruz lacustrine and fluvial sediments for plant fossils that could confirm the GDM and GSM extinction predictions. Additionally, two new 40Ar/39Ar geochronological analyses were per formed, constraining the age of the sediments to 1.3 Ma (Calabrian). Among the fossils, Eurya stigmosa (R.Ludw.) Mai (Theaceae) seeds were recognised and studied by scanning electron microscopy (SEM). E. stigmosa is the first report of a natural (non-anthropogenic) extinct plant in the fossil record for Madeira Island, and for an oceanic island, confirming the GDM and GSM predictions. Eurya spp. palae obiogeography indicates wider distribution in Europe until the end of the Pliocene (2.58 Ma), becoming extirpated to small refugia and extinct thereafter. The Madeiran record expands the formerly unknown presence of E. stigmosa to the Macaronesian realm. The new dating of the deposit at 1.3 Ma (Calabrian) means that E. stigmosa in Madeira was already in a refugium. The extinction in Madeira is most probably a combination of island ontogeny and climate change due to Pleistocene glaciations. The palaeoecological role of this extinct shrub or tree is currently unknown, but it was a probably an element of the Madeiran laurel forest, as this community was already present in Madeira at least 1.8 My ago. This new information corroborates the predictive power of GDM and GSM and adds a new view on the importance of studying oceanic island palaeobotany, specially palaeocarpofloras.
- Tracing insular woodiness in giant Daucus (s.l.) fruit fossils from the Early Pleistocene of Madeira Island (Portugal)Publication . Góis-Marques, Carlos A.; Nascimento, Lea de; Fernández‐Palacios, José María; Madeira, José; Sequeira, Miguel Menezes dePlants on oceanic islands can evolve insular syndromes such as secondary woodiness, a generalized trend found in island floras worldwide. This phenomenon occurs through evolution in situ. It is triggered by ecological and physiological stimuli that trans form herbaceous annuals into woody perennials. However, well-dated and informative fossils that could help track and frame the evo lution of this syndrome are lacking. Remarkably, in Madeira Island (Portugal), there are good examples of Apiaceae that evolved secondary woodiness, like the giant neoendemic Melanoselinum (≡ Daucus). Apiaceae has a very scarce fossil record, despite being a cosmopolitan family and an economically important crop. Here we describe the oldest Daucus s.l. fossil known to date and the first fossil evidence of a plant with insular woodiness. The fossils are preserved as mummified/compressed mericarps within 1.3-million year-old fluvio-lacustrine sediments of the Funchal unit, Upper Volcanic complex, near Porto da Cruz. We assign them to the extant neoendemic species Melanoselinum (≡ Daucus) decipiens. The mericarp morphology shows remarkable stasis since the Calabrian stage of the Early Pleistocene. Our results demonstrate that in the Madeiran Daucinae clade, insular woodiness developed at least 1.3 million years ago, indicating a coeval or earlier immigration to Madeira Island of a Daucus sp. Our results reinforce the role of palaeobotanical research in oceanic islands, supported by stratigraphy and geochronology studies, as a key element for the understanding of plant palaeobiogeography, ecology and evolution worldwide. We expect this contribution to shed light on the evolutionary origins of carrots, and related plant groups, an important element of human food, and to better comprehend the evolution of plant insular woodiness.