Repository logo
 
Loading...
Profile Picture
Person

Jasmins, Gonçalo

Search Results

Now showing 1 - 2 of 2
  • Volatilomic fingerprint of tomatoes by HS-SPME/GC-MS as a suitable analytical platform for authenticity sssessment purposes
    Publication . Jasmins, Gonçalo; Azevedo, Tânia; Câmara, José S.; Perestrelo, Rosa; Jasmins, Gonçalo; Azevedo, Tânia; Câmara, José; Perestrelo, Rosa
    Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum var. cerasiforme, and S. betaceum—encompassing six distinct varieties, through the application of headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS). A total of 55 volatile organic compounds (VOCs) spanning multiple chemical classes were identified, of which only 28 were ubiquitously present across all varieties examined. Carbonyl compounds constituted the predominant chemical family, with hexanal and (E)-2-hexenal emerging as putative key contributors to the characteristic green and fresh olfactory notes. Notably, esters were found to dominate the unique volatile fingerprint of cherry tomatoes, particularly methyl 2-hydroxybenzoate, while Kumato and Roma varieties exhibited elevated levels of furanic compounds. Multivariate statistical analyses, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), demonstrated clear varietal discrimination and identified potential aroma-associated biomarkers such as phenylethyl alcohol, 3-methyl-1-butanol, hexanal, (E)-2-octenal, (E)-2-nonenal, and heptanal. Collectively, these findings underscore the utility of volatilomic fingerprint as a robust tool for varietal identification and quality control within the food industry.
  • Tracing the volatilomic fingerprint of the most popular italian fortified wines
    Publication . Jasmins, Gonçalo; Perestrelo, Rosa; Coïsson, Jean Daniel; Sousa, Patrícia; Teixeira, José A.; Bordiga, Matteo; Câmara, José S.; Jasmins, Gonçalo; Perestrelo, Rosa; Câmara, José
    The aim of the current study was to provide a useful platform to identify characteristic molecular markers related to the authenticity of Italian fortified wines. For this purpose, the volatilomic fingerprint of the most popular Italian fortified wines was established using headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME/GC-MS). Several volatile organic compounds (VOCs), belonging with distinct chemical groups, were identified, ten of which are common to all the analyzed fortified Italian wines. Terpenoids were the most abundant chemical group in Campari bitter wines due to limonene’s high contribution to the total volatilomic fingerprint, whereas for Marsala wines, alcohols and esters were the most predominant chemical groups. The fortified Italian wines VOCs network demonstrated that the furanic compounds 2-furfural, ethyl furoate, and 5-methyl-2-furfural, constitute potential molecular markers of Marsala wines, while the terpenoids nerol, α-terpeniol, limonene, and menthone isomers, are characteristic of Vermouth wines. In addition, butanediol was detected only in Barolo wines, and β-phellandrene and β-myrcene only in Campari wines. The obtained data reveal an adequate tool to establish the authenticity and genuineness of Italian fortified wines, and at the same time constitute a valuable contribution to identify potential cases of fraud or adulteration to which they are subject, due to the high commercial value associated with these wines. In addition, they contribute to the deepening of scientific knowledge that supports its valorization and guarantee of quality and safety for consumers.