Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Vibrações induzidas por peões em escadas metálicasPublication . Andrade, Pedro; Santos, José; Escórcio, Patrícia
- Direct integration methods versus modal superposition method, on predicting staircases vibrationsPublication . Andrade, Pedro; Santos, José; Escórcio, PatríciaThe majority of Finite Element software’s present two different solutions methods to perform time history analysis of the equations of motion due to dynamic (time-varying) loads: Direct Integration and Modal Superposition. This paper aims to assess which method should be employed in the design of modern flexible staircases, to more efficiently predict human induced vibrations. This was verified by estimating vibrations on a real staircase using the two time domain analysis methods and, then, comparing with vibrations experimentally measured. The results indicate that Direct Integration could yield to overestimated responses due to the limited capacity, as the vibration modes increase, of FE numerical models to realistic predict natural frequencies and modal shapes of a real structure. Therefore, Modal Superposition is suggested to be used for design routines, excluding, for the same reason, the vibration modes with higher frequency content. © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo Keywords: Modal Superposition; Direct Integration; Duhamel Integral; Human Walking Vibrations; Flexible Staircases. * Corresponding author. Tel.: +351 291 705 197. E-mail address: jmmns@fe.up.pt Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2019) 000–000 www.elsevier.com/locate/procedia 2452-3216 © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo 1st Virtual European Conference on Fracture Direct Integration Methods versus Modal Superposition Method, on Predicting Staircases Vibrations Pedro Andradea , José Santosb,c,*, Patrícia Escórciob a University of Madeira, 9020-105 Funchal, Portugal b University of Madeira, Faculty of Exact Sciences and Engineering, Department of Civil Engineering and Geology, 9020-105 Funchal, Portugal c CONSTRUCT-LABEST, Faculty of Engineering (FEUP), University of Porto, Portugal Abstract The majority of Finite Element software’s present two different solutions methods to perform time history analysis of the equations of motion due to dynamic (time-varying) loads: Direct Integration and Modal Superposition. This paper aims to assess which method should be employed in the design of modern flexible staircases, to more efficiently predict human induced vibrations. This was verified by estimating vibrations on a real staircase using the two time domain analysis methods and, then, comparing with vibrations experimentally measured. The results indicate that Direct Integration could yield to overestimated responses due to the limited capacity, as the vibration modes increase, of FE numerical models to realistic predict natural frequencies and modal shapes of a real structure. Therefore, Modal Superposition is suggested to be used for design routines, excluding, for the same reason, the vibration modes with higher frequency content.
- Numerical methods to predict human induced vibrations on low frequency stairs. Part 2: evaluation by comparing with experimental dataPublication . Andrade, Pedro; Santos, José; Escórcio, PatríciaNowadays, vibration serviceability criteria are becoming the governing factor in the design of most modern staircases, because their increasing susceptibility to human induced vibrations. Although more awareness have been raised to the dynamic design of new staircases, there are still few studies found in the literature that compare the different results of numerical methods for predicting vibrations with experimental data, in order to validate the same. Hence, this paper employs the main existing numerical methods to an actual staircase with known liveness, by comparing the predicted results with the experimental data, to evaluate their accuracy when designing flexible staircases. This paper is Part 2 of a set of two papers. In Part 1, the different numerical methods are presented and details are given of how to apply them. To accomplish this, an in-situ staircase dynamic characterisation and several walking tests are performed. The measured vibrations are initially compared with different proposed acceptable limits to confirm that the vi brations exceed the limits. The different numerical methods are then employed and the predicted results are compared with the experimental results. Lastly, the main findings of this work are discussed together with those of diverse researchers who also applied one of these procedures to estimate vibrations. The results obtained showed that, with two of the numerical procedures applied (footfall force time histories and simplified vibration evaluation), it was possible to effectively predict the vibrations, while with the remaining two (Fourier series walking models and steady-state analysis), in general, overestimated responses were predicted.