Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Occurrence of Puccinia spp. spores in Madeira Island and their phytopathological importancePublication . Camacho, Irene; Leça, Rubina; Sardinha, Duarte; Camacho, Roberto; Sadyś, MagdalenaThe genus Puccinia represents rust infections, which are responsible for great productivity losses in crops of commercial and ornamental plants worldwide. This work is aimed at determining the occurrence of Puccinia spp. spores in Madeira Island in order to infer the exposure risks from a phytopathological point of view. A phytopathological analysis was performed in 203 local plant samples between January 2003 and December 2012. During the same period the airborne concentrations of rust spores were monitored following well-established guidelines. Aerobiological data was compared with meteorological records. Based on macro and microscopic analyses, five species of rusts were identified: P. horiana, P. buxi, P. porri, P. pelargoniizonalis, and P. sorghi, and they were found mostly in spring and summer. A total of 20 samples out of 203 analysed plants (9.8%), were infected with Puccinia spores, i.e., P. horiana (5.9%), P. buxi (1.47%), P. porri and P. pelargonii-zonalis (0.98%), and P. sorghi (0.5%). During the studied period Puccinia spores attained an annual average concentration of 126 spores m−3 and most of them were recorded between March and October. Meteorological factors were determinant in fluctuations in spore concentration. Relative humidity was the parameter that favoured the biggest release and dispersal of the rust spores, whereas rainfall revealed a significant negative effect. Rusts do not represent an important plant pathogen in Madeira Island, as shown by the low infection frequencies and levels of airborne spore concentrations.
- Main features of Poaceae pollen season in Madeira region (Portugal)Publication . Camacho, Irene Câmara; Câmara, Rita; Camacho, RobertoThe pollinic spectrum of the Madeira region is dominated by grass pollen, which also represents an important aeroallergen in Europe. The present work aims to analyze the main features of the Poaceae pollen season in the Madeira region to determine the allergic risk. The study took place in Funchal city, the capital of Madeira Island, over a period of 10 years (2003–2012). The airborne pollen monitoring was carried out with a Hirst type volumetric trap, following well-established guidelines. In the atmosphere of Funchal, the mean annual Poaceae pollen index was 229. The mean Poaceae pollen season lasts 275 days, with an onset date in January/March and an end date in November/December. Poaceae counts showed a seasonal variation with 2 distinct peaks: a higher peak between March and June, and the second one in autumn. The peak values occurred mainly between April and June, and the highest peak was 93 grains/m3 , detected on the 27th May of 2010. The Poaceae pollen remaining at low levels during the whole growing season, presenting a nil to low allergenic risk during most of the study period. Higher critical levels of allergens have been revealed after 2006. In general, the pollen risk from Poaceae lasted only a few days per year, despite the very long pollen season and the abundance of grasses in the landscape of Madeira Island.
- Madeira-a tourist destination for asthma sufferersPublication . Camacho, Irene; Grinn-Gofroń, Agnieszka; Camacho, Roberto; Berenguer, Pedro; Sadyś, MagdalenaMadeira Island is a famous tourist destination due to its natural and climatic values. Taking into account optimal weather conditions, flora richness and access to various substrates facilitating fungal growth, we hypothesised a very high risk of elevated fungal spore and pollen grain concentrations in the air of Funchal, the capital of Madeira. Concentration levels of the most allergenic taxa were measured from 2003 to 2009, using a 7-day volumetric air sampler, followed by microscopy analysis. Dependence of bioaerosols on the weather conditions and land use were assessed using spatial and statistical tools. Obtained results were re-visited by a comparison with hospital admission data recorded at the Dr. Nélio Mendonça Hospital in Funchal. Our results showed that despite propitious climatic conditions, overall pollen grain and fungal spore concentrations in the air were very low and did not exceed any clinically established threshold values. Pollen and spore peak concentrations also did not match with asthma outbreaks in the winter. Identification of places that are "free" from biological air pollution over the summer, such as Madeira Island, is very important from the allergic point of view.
- Monitoring of anamorphic fungal spores in Madeira region (Portugal), 2003–2008Publication . Sousa, Lisandra; Camacho, Irene Câmara; Grinn-Gofroń, Agnieszka; Camacho, RobertoSeven years of aeromycological study was performed in the city of Funchal with the purpose to determine the anamorphic spore content of this region and its relationship to meteorological factors. The sampling was carried out with a Hirst-type volumetric spore trap following well-established guidelines. A total of 17,586 anamorphic fungal spores were recorded during the studied period, attaining an annual average concentration of 2931 spores m-3 . Anamorphic fungal spores were observed throughout the year, although the major peaks were registered during spring (April–June) and autumn period (September– November). The lowest spore levels were recorded between December and February months. Over 14 taxa of anamorphic fungal spores were observed with Cladosporium being the most prevalent fungal type accounting for 78 % of the total conidiospores. The next in importance was Alternaria (5.4 %), Fusarium (4.7 %), Torula (3.9 %) and Botrytis (1.9 %). Temperature was the meteorological parameter that favoured the most release and dispersal of the conidiospores, whereas rainfall revealed a negative effect. Despite the low concentration levels found in our region, the majority of the fungal types identified are described as potential aeroallergens. This study provides the seasonal variation of the conidiospores and the periods when the highest counts may be expected, representing a preventive tool in the allergic sensitization of the population.