Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Particle swarm optimisation: a historical review up to the current developmentsPublication . Freitas, Diogo; Lopes, Luiz Guerreiro; Dias, Fernando MorgadoThe Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises (or maximises) a given problem. Today, PSO is one of the most well-known and widely used swarm intelligence algorithms and metaheuristic techniques, because of its simplicity and ability to be used in a wide range of applications. However, in-depth studies of the algorithm have led to the detection and identification of a number of problems with it, especially convergence problems and performance issues. Consequently, a myriad of variants, enhancements and extensions to the original version of the algorithm, developed and introduced in the mid-1990s, have been proposed, especially in the last two decades. In this article, a systematic literature review about those variants and improvements is made, which also covers the hybridisation and parallelisation of the algorithm and its extensions to other classes of optimisation problems, taking into consideration the most important ones. These approaches and improvements are appropriately summarised, organised and presented, in order to allow and facilitate the identification of the most appropriate PSO variant for a particular application.
- A neural network-based approach for approximating arbitrary roots of polynomialsPublication . Freitas, Diogo; Lopes, Luiz; Dias, Fernando MorgadoFinding arbitrary roots of polynomials is a fundamental problem in various areas of science and engineering. A myriad of methods was suggested to address this problem, such as the sequential Newton’s method and the Durand–Kerner (D–K) simultaneous iterative method. The sequential iterative methods, on the one hand, need to use a deflation procedure in order to compute approximations to all the roots of a given polynomial, which can produce inaccurate results due to the accumulation of rounding errors. On the other hand, the simultaneous iterative methods require good initial guesses to converge. However, Artificial Neural Networks (ANNs) are widely known by their capacity to find complex mappings between the dependent and independent variables. In view of this, this paper aims to determine, based on comparative results, whether ANNs can be used to compute approximations to the real and complex roots of a given polynomial, as an alternative to simultaneous iterative algorithms like the D–K method. Although the results are very encouraging and demonstrate the viability and potentiality of the suggested approach, the ANNs were not able to surpass the accuracy of the D–K method. The results indicated, however, that the use of the approximations computed by the ANNs as the initial guesses for the D–K method can be beneficial to the accuracy of this method