Repository logo
 
Loading...
Project Logo
Research Project

Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa

Authors

Publications

Implementation Strategy of Convolution Neural Networks on Field Programmable Gate Arrays for Appliance Classification Using the Voltage and Current (V-I) Trajectory
Publication . Baptista, Darío; Mostafa, Sheikh Shanawaz; Pereira, Lucas; Sousa, Leonel; Dias, Fernando Morgado
Specific information about types of appliances and their use in a specific time window could help determining in details the electrical energy consumption information. However, conventional main power meters fail to provide any specific information. One of the best ways to solve these problems is through non-intrusive load monitoring, which is cheaper and easier to implement than other methods. However, developing a classifier for deducing what kind of appliances are used at home is a difficult assignment, because the system should identify the appliance as fast as possible with a higher degree of certainty. To achieve all these requirements, a convolution neural network implemented on hardware was used to identify the appliance through the voltage and current (V-I) trajectory. For the implementation on hardware, a field programmable gate array (FPGA) was used to exploit processing parallelism in order to achieve optimal performance. To validate the design, a publicly available Plug Load Appliance Identification Dataset (PLAID), constituted by 11 different appliances, has been used. The overall average F-score achieved using this classifier is 78.16% for the PLAID 1 dataset. The convolution neural network implemented on hardware has a processing time of approximately 5.7 ms and a power consumption of 1.868 W.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UID/CEC/50021/2013

ID