Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Alternative oxidase gene family in Hypericum perforatum L.: characterization and expression at the post-germinative phase
Publication . Velada, Isabel; Cardoso, Hélia G.; Ragonezi, Carla; Nogales, Amaia; Ferreira, Alexandre; Valadas, Vera; Arnholdt-Schmitt, Birgit
Alternative oxidase (AOX) protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon a diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356). High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA (glyceraldehyde-3-phosphate dehydrogenase A subunit) and the HpCAT1 (catalase 1), were evaluated during the post-germinative development. Gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 (chamba phenolic oxidative coupling protein 1) and HpH2A (histone 2A) as the most suitable reference genes (RGs) according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other plant species) transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other plant species) transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to investigate in more detail the participation of AOX genes during the post-germinative development in H. perforatum, in order to explore their functional role in optimizing photosynthesis and in the control of reactive oxygen species (ROS) levels during the process.
Reference genes selection and normalization of oxidative stress responsive genes upon different temperature stress conditions in Hypericum perforatum L
Publication . Velada, Isabel; Ragonezi, Carla; Arnholdt-Schmitt, Birgit; Cardoso, Hélia
Reverse transcription-quantitative real-time PCR (RT-qPCR) is a widely used technique for gene expression analysis. The reliability of this method depends largely on the suitable selection of stable reference genes for accurate data normalization. Hypericum perforatum L. (St. John’s wort) is a field growing plant that is frequently exposed to a variety of adverse environmental stresses that can negatively affect its productivity. This widely known medicinal plant with broad pharmacological properties (anti-depressant, anti-tumor, anti-inflammatory, antiviral, antioxidant, anti-cancer, and antibacterial) has been overlooked with respect to the identification of reference genes suitable for RT-qPCR data normalization. In this study, 11 candidate reference genes were analyzed in H. perforatum plants subjected to cold and heat stresses. The expression stability of these genes was assessed using GeNorm, NormFinder and BestKeeper algorithms. The results revealed that the ranking of stability among the three algorithms showed only minor differences within each treatment. The best-ranked reference genes differed between cold- and heat-treated samples; nevertheless, TUB was the most stable gene in both experimental conditions. GSA and GAPDH were found to be reliable reference genes in cold-treated samples, while GAPDH showed low expression stability in heat-treated samples. 26SrRNA and H2A had the highest stabilities in the heat assay, whereas H2A was less stable in the cold assay. Finally, AOX1, AOX2, CAT1 and CHS genes, associated with plant stress responses and oxidative stress, were used as target genes to validate the reliability of identified reference genes. These target genes showed differential expression profiles over time in treated samples. This study not only is the first systematic analysis for the selection of suitable reference genes for RT-qPCR studies in H. perforatum subjected to temperature stress conditions, but may also provide valuable information about the roles of genes associated with temperature stress responses.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

5876-PPCDTI

Funding Award Number

PTDC/AGR-GPL/099263/2008

ID