Repository logo
 
Publication

Untargeted urinary 1H NMR-based metabolomic pattern as a potential platform in breast cancer detection

dc.contributor.authorSilva, Catarina L.
dc.contributor.authorOlival, Ana
dc.contributor.authorPerestrelo, Rosa
dc.contributor.authorSilva, Pedro
dc.contributor.authorTomás, Helena
dc.contributor.authorCâmara, José S.
dc.date.accessioned2022-06-15T10:14:53Z
dc.date.available2022-06-15T10:14:53Z
dc.date.issued2019
dc.description.abstract: Breast cancer (BC) remains the second leading cause of death among women worldwide. An emerging approach based on the identification of endogenous metabolites (EMs) and the establishment of the metabolomic fingerprint of biological fluids constitutes a new frontier in medical diagnostics and a promising strategy to differentiate cancer patients from healthy individuals. In this work we aimed to establish the urinary metabolomic patterns from 40 BC patients and 38 healthy controls (CTL) using proton nuclear magnetic resonance spectroscopy (1H-NMR) as a powerful approach to identify a set of BC-specific metabolites which might be employed in the diagnosis of BC. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied to a 1H-NMR processed data matrix. Metabolomic patterns distinguished BC from CTL urine samples, suggesting a unique metabolite profile for each investigated group. A total of 10 metabolites exhibited the highest contribution towards discriminating BC patients from healthy controls (variable importance in projection (VIP) >1, p < 0.05). The discrimination efficiency and accuracy of the urinary EMs were ascertained by receiver operating characteristic curve (ROC) analysis that allowed the identification of some metabolites with the highest sensitivities and specificities to discriminate BC patients from healthy controls (e.g. creatine, glycine, trimethylamine N-oxide, and serine). The metabolomic pathway analysis indicated several metabolism pathway disruptions, including amino acid and carbohydrate metabolisms, in BC patients, namely, glycine and butanoate metabolisms. The obtained results support the high throughput potential of NMR-based urinary metabolomics patterns in discriminating BC patients from CTL. Further investigations could unravel novel mechanistic insights into disease pathophysiology, monitor disease recurrence, and predict patient response towards therapy.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSilva, C. L., Olival, A., Perestrelo, R., Silva, P., Tomás, H., & Câmara, J. S. (2019). Untargeted urinary 1H NMR-based metabolomic pattern as a potential platform in breast cancer detection. Metabolites, 9(11), 269. https://doi.org/10.3390/metabo9110269pt_PT
dc.identifier.doi10.3390/metabo9110269pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.13/4330
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationMadeira Chemistry Research Centre
dc.relationEXPLORING THE VOLATOME OF NONCOMMUNICABLE DISEASES AS A PROMISING, INNOVATIVE AND INTEGRATING APPROACH FOR THEIR RAPID DIAGNOSTICS. THE CASE STUDY OF CANCER AND NEURODEGENERATIVE DISEASES
dc.relationNon-invasive, innovative and promising strategy for early diagnosis of breast cancer through the establishment of urinary volatile metabolomic profiles of breast cancer patients as well as from breast cancer tissues and breast cancer cell lines
dc.relationFrom the development of a new nanomaterial-based device to the early disease diagnosis of lung cancer based on the volatomic and proteomic pattern of exhaled breath - Innovative stratey for selective removal of ethyl carbamate from wines through the development of a molecular imprinted polymer coated on celulose nanofibers
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectBreast cancerpt_PT
dc.subject1H NMRpt_PT
dc.subjectUrinept_PT
dc.subjectMetabolomicspt_PT
dc.subjectChemometric toolspt_PT
dc.subject.pt_PT
dc.subjectFaculdade de Ciências Exatas e da Engenhariapt_PT
dc.subjectCentro de Química da Madeira
dc.titleUntargeted urinary 1H NMR-based metabolomic pattern as a potential platform in breast cancer detectionpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleMadeira Chemistry Research Centre
oaire.awardTitleEXPLORING THE VOLATOME OF NONCOMMUNICABLE DISEASES AS A PROMISING, INNOVATIVE AND INTEGRATING APPROACH FOR THEIR RAPID DIAGNOSTICS. THE CASE STUDY OF CANCER AND NEURODEGENERATIVE DISEASES
oaire.awardTitleNon-invasive, innovative and promising strategy for early diagnosis of breast cancer through the establishment of urinary volatile metabolomic profiles of breast cancer patients as well as from breast cancer tissues and breast cancer cell lines
oaire.awardTitleFrom the development of a new nanomaterial-based device to the early disease diagnosis of lung cancer based on the volatomic and proteomic pattern of exhaled breath - Innovative stratey for selective removal of ethyl carbamate from wines through the development of a molecular imprinted polymer coated on celulose nanofibers
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FQUI%2F00674%2F2019/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/Inn-INDIGO%2F0001%2F2015/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/OE/SFRH%2FBD%2F97039%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBPD%2F97387%2F2013/PT
oaire.citation.issue11pt_PT
oaire.citation.startPage269pt_PT
oaire.citation.titleMetabolitespt_PT
oaire.citation.volume9pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream3599-PPCDT
oaire.fundingStreamOE
person.familyNameSousa Luís
person.familyNameDias Olival
person.familyNamePerestrelo
person.familyNameSilva
person.familyNameTomás
person.familyNameCâmara
person.givenNameCatarina Grace
person.givenNameAna Cristina
person.givenNameRosa
person.givenNamePedro
person.givenNameHelena
person.givenNameJosé
person.identifierC-1300-2019
person.identifier1441319
person.identifier556975
person.identifierG-3003-2013
person.identifier.ciencia-id9813-3B88-BA8D
person.identifier.ciencia-id6610-5EA1-D660
person.identifier.ciencia-id251A-D5F7-9E32
person.identifier.ciencia-id4D14-D31E-A8BE
person.identifier.ciencia-id481C-08CE-90E5
person.identifier.orcid0000-0002-3018-3165
person.identifier.orcid0000-0001-5461-5420
person.identifier.orcid0000-0002-7223-1022
person.identifier.orcid0000-0001-7932-1015
person.identifier.orcid0000-0002-7856-2041
person.identifier.orcid0000-0003-1965-3151
person.identifier.ridB-9995-2019
person.identifier.ridI-2307-2014
person.identifier.ridE-5991-2010
person.identifier.scopus-author-id57194492726
person.identifier.scopus-author-id16686828800
person.identifier.scopus-author-id6508104177
person.identifier.scopus-author-id10140393000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2853e6b6-0fb5-454c-aedb-05528b76c484
relation.isAuthorOfPublication7a7f997e-61d9-4d66-8500-3f769cd211e4
relation.isAuthorOfPublication003ff241-47d2-497b-b9ac-c0d1713f8bf3
relation.isAuthorOfPublicatione73a3a19-2c48-42d7-a50d-84abf7502224
relation.isAuthorOfPublication3a747114-6ab9-454b-985b-00cbf792e273
relation.isAuthorOfPublicatione10d78be-e547-4d25-92b5-06a997ed78da
relation.isAuthorOfPublication.latestForDiscoverye10d78be-e547-4d25-92b5-06a997ed78da
relation.isProjectOfPublication0e558baa-fee7-4f1c-b713-f79ed1581567
relation.isProjectOfPublication31fd4a52-8b42-4c58-95a2-b4644fe10d9f
relation.isProjectOfPublicationd0c3ad04-c707-4bfa-a380-e5e3758028c2
relation.isProjectOfPublication921502e4-f54c-42d2-8d38-34b8eac8affc
relation.isProjectOfPublication.latestForDiscovery921502e4-f54c-42d2-8d38-34b8eac8affc

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Untargeted urinary 1H NMR-based metabolomic pattern as a potential platform in breast cancer detection.pdf
Size:
3.82 MB
Format:
Adobe Portable Document Format