Repository logo
 
Publication

Abalearn: a risk-sensitive approach to self-play learning in Abalone

dc.contributor.authorCampos, Pedro
dc.contributor.authorLanglois, Thibault
dc.date.accessioned2022-09-13T11:05:59Z
dc.date.available2022-09-13T11:05:59Z
dc.date.issued2003
dc.description.abstractThis paper presents Abalearn, a self-teaching Abalone pro gram capable of automatically reaching an intermediate level of play without needing expert-labeled training examples, deep searches or ex posure to competent play. Our approach is based on a reinforcement learning algorithm that is risk seeking, since defensive players in Abalone tend to never end a game. We show that it is the risk-sensitivity that allows a successful self-play training. We also propose a set of features that seem relevant for achiev ing a good level of play. We evaluate our approach using a fixed heuristic opponent as a bench mark, pitting our agents against human players online and comparing samples of our agents at different times of training.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCampos, P., Langlois, T. (2003). Abalearn: A Risk-Sensitive Approach to Self-play Learning in Abalone. In: Lavrač, N., Gamberger, D., Blockeel, H., Todorovski, L. (eds) Machine Learning: ECML 2003. ECML 2003. Lecture Notes in Computer Science(), vol 2837. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39857-8_6pt_PT
dc.identifier.doi10.1007/978-3-540-39857-8_6pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.13/4603
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectAbalearnpt_PT
dc.subjectSelf-play learningpt_PT
dc.subjectAbalonept_PT
dc.subject.pt_PT
dc.subjectFaculdade de Ciências Exatas e da Engenhariapt_PT
dc.titleAbalearn: a risk-sensitive approach to self-play learning in Abalonept_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.endPage46pt_PT
oaire.citation.startPage35pt_PT
oaire.citation.titleMachine Learning: ECML 2003. ECML 2003. Lecture Notes in Computer Science(), vol 2837.pt_PT
oaire.citation.volume2837pt_PT
person.familyNamePereira Campos
person.givenNamePedro Filipe
person.identifier.ciencia-id7C19-B5E5-01CA
person.identifier.orcid0000-0001-7706-5038
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationfb4a962b-b799-4ba2-8778-3d9d0a64b2b0
relation.isAuthorOfPublication.latestForDiscoveryfb4a962b-b799-4ba2-8778-3d9d0a64b2b0

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abalearn.pdf
Size:
210.75 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: