Name: | Description: | Size: | Format: | |
---|---|---|---|---|
4.42 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Os sensores baseados em fibra ótica apresentam algumas vantagens
interessantes que podem justificar a sua implementação, em substituição ou em
complemento dos tradicionais sensores que atuam no domínio elétrico.
Neste trabalho é apresentado o desenvolvimento de um equipamento de
interrogação de sensores em fibra ótica, baseados em gratings (redes) de
período longo e de Bragg. Este tipo de sensores comporta-se como um filtro
rejeita banda, atenuando algumas regiões bem definidas do espetro.
O equipamento recorre a um laser multimodo e respetiva resposta em
temperatura, realizando um varrimento espetral ao longo de uma das bandas de
rejeição do sensor, criando um espetro discreto do mesmo. Utilizando uma
técnica de ajuste, o espetro original do grating é recriado.
Foi desenvolvido o circuito elétrico desde a alimentação do laser, controlo
de temperatura e aquisição de dados. Foi dada particular atenção à proteção do
laser, pois é o elemento mais caro e sensível do equipamento.
Posteriormente, foi desenvolvido o software responsável por comandar o
circuito e leitura de valores de tensão para obtenção de dados, por meio de um
microcontrolador.
Foi criada uma interface gráfica que permite a interação homem-máquina,
na qual é possível o comando do equipamento e apresentação dos dados
recolhidos.
Por fim, é analisado o desempenho do equipamento. A análise de
resultados centrou-se na capacidade do equipamento em interrogar gratings de
período longo.
O equipamento desenvolvido apresentou uma região espetral de
interrogação entre os 1298 e os 1308 nm, com erros máximos observados de
2,8 nm e 5,1 dB, apresentando ainda uma consistência nos resultados ao longo
de sucessivas interrogações. O custo final do equipamento, inferior a €400,
encontra-se muito abaixo comparativamente às soluções com analisadores de
espetro, existentes no mercado.
Optical fiber sensors show some interesting advantages that may justify their choice over the traditional sensors operating on the electrical domain. On this thesis, the development of an equipment capable of interrogating optical fiber sensors, based on long period gratings and Bragg gratings, is presented. These types of sensors behave as band rejection filters which atenuate some well defined spectral regions. The equipment makes use of a multimode laser diode and its temperature response, doing a spectral sweep on one of the rejection bands of the sensor and creating a discrete spectrum of said band. Using a curve fitting technique it is possible to restore the original spectrum. The electrical circuit was developed from the laser powering to its temperature control and data acquisition. Particular attention was given to ensure the laser protection since this is the most expensive and sensitive element of the whole system. Afterwards, the software part was developed which is in charge of controlling the whole circuit and also of doing some voltage readings in order to acquire data, making use of a microcontroller. A graphical user interface was also created to allow the human – machine interaction, making it possible to control the circuit and show the data acquired. Finally, the performance of the equipment is tested. The performance evaluation of the equipment focused on its capability to interrogate long period gratings. The presented interrogation unit showed an interrogation spectral region ranging from 1298 to 1308 nm, with maximum errors of 2,8 nm and 5,1 dB while also presenting consistency between successive interrogations. The total cost of the built equipment, below €400, sits well under the cost of typical interrogation units using optical spectrum analyzers.
Optical fiber sensors show some interesting advantages that may justify their choice over the traditional sensors operating on the electrical domain. On this thesis, the development of an equipment capable of interrogating optical fiber sensors, based on long period gratings and Bragg gratings, is presented. These types of sensors behave as band rejection filters which atenuate some well defined spectral regions. The equipment makes use of a multimode laser diode and its temperature response, doing a spectral sweep on one of the rejection bands of the sensor and creating a discrete spectrum of said band. Using a curve fitting technique it is possible to restore the original spectrum. The electrical circuit was developed from the laser powering to its temperature control and data acquisition. Particular attention was given to ensure the laser protection since this is the most expensive and sensitive element of the whole system. Afterwards, the software part was developed which is in charge of controlling the whole circuit and also of doing some voltage readings in order to acquire data, making use of a microcontroller. A graphical user interface was also created to allow the human – machine interaction, making it possible to control the circuit and show the data acquired. Finally, the performance of the equipment is tested. The performance evaluation of the equipment focused on its capability to interrogate long period gratings. The presented interrogation unit showed an interrogation spectral region ranging from 1298 to 1308 nm, with maximum errors of 2,8 nm and 5,1 dB while also presenting consistency between successive interrogations. The total cost of the built equipment, below €400, sits well under the cost of typical interrogation units using optical spectrum analyzers.
Description
Keywords
Interrogação Laser LPG Multimodo Sensor Interrogation Multimode Engenharia Eletrotécnica - Telecomunicações . Faculdade de Ciências Exatas e da Engenharia