Name: | Description: | Size: | Format: | |
---|---|---|---|---|
7.45 MB | Adobe PDF |
Authors
Abstract(s)
Os sistemas automáticos de conversação, conhecidos normalmente como chat bots,
estão a tornar-se cada vez mais populares e devem ser capazes de interpretar a
linguagem humana para compreender e comunicar com os seres humanos. A deteção de
intenções desempenha uma tarefa crucial para desenvolver conversas inteligentes nestes
sistemas de conversa. As implementações existentes destes sistemas requerem muitos
dados etiquetados e a sua aquisição pode ser dispendiosa e demorada. Esta tese visa
avaliar representações de texto existentes, utilizando abordagens clássicas, tais como
Word2Vec, GloVe e modelos de Transformer pré-treinados (BERT, RoBERTa, GPT2 e
outros), para possível automatização de dados de diálogo não etiquetados através de
algoritmos de agrupamento. Os algoritmos de agrupamento testados, vão desde o
clássico K-Means até abordagens mais sofisticadas, tais como HDBSCAN, com a ajuda
de técnicas de redução de dimensão (t-SNE, UMAP). Um conjunto de dados é utilizado
para avaliação das técnicas utilizadas, que contêm diálogo de intents de utilizadores em
múltiplos domínios e taxonomia de intents variada que se encontram no mesmo
domínio.
Os resultados mostram que os Transformers apresentam um desempenho de
representação de texto superior às representações clássicas. No entanto, um modelo
ensemble com múltiplos algoritmos de agrupamento e de múltiplas representações de
fontes diferentes apresenta uma melhoria drástica na solução final. A aplicação do
UMAP e t-SNE em dimensões mais baixas pode também apresentar um desempenho tão
bom ou mesmo melhor do que as representações originais.
Dialog systems commonly called chat bots are increasingly more popular and must interpret spoken language to understand and communicate with humans. Intent detection plays a crucial task to develop smart and intelligent conversations in these conversational systems. Existing implementations require a lot of labeled data and acquiring it can be costly and time-consuming. This thesis aims to evaluate existing text representations, using classical approaches, such as Word2Vec, GloVe, and current state of the art pre-trained Transformer models (BERT, RoBERTa, GPT2, and more) for possible automation of unlabeled dialog data through clustering algorithms. The cluster algorithms tested, range from the classical K-Means to more sophisticated approaches such as HDBSCAN, with dimension reduction techniques (t-SNE, UMAP) as pre processing techniques. A dataset is used for evaluation that contains multiple user intents in many domains and varying intents taxonomy in the same domain. Results show that Transformers demonstrate superior text representation performance to classical representations. Nevertheless, ensemble clustering with multiple clustering algorithms and multiple representations from different sources shows massive improvement in the final clustering solution. Applying UMAP and t-SNE in lower dimensions may also perform as good or even better than the original clustering with the original embeddings.
Dialog systems commonly called chat bots are increasingly more popular and must interpret spoken language to understand and communicate with humans. Intent detection plays a crucial task to develop smart and intelligent conversations in these conversational systems. Existing implementations require a lot of labeled data and acquiring it can be costly and time-consuming. This thesis aims to evaluate existing text representations, using classical approaches, such as Word2Vec, GloVe, and current state of the art pre-trained Transformer models (BERT, RoBERTa, GPT2, and more) for possible automation of unlabeled dialog data through clustering algorithms. The cluster algorithms tested, range from the classical K-Means to more sophisticated approaches such as HDBSCAN, with dimension reduction techniques (t-SNE, UMAP) as pre processing techniques. A dataset is used for evaluation that contains multiple user intents in many domains and varying intents taxonomy in the same domain. Results show that Transformers demonstrate superior text representation performance to classical representations. Nevertheless, ensemble clustering with multiple clustering algorithms and multiple representations from different sources shows massive improvement in the final clustering solution. Applying UMAP and t-SNE in lower dimensions may also perform as good or even better than the original clustering with the original embeddings.
Description
Keywords
Agrupamentos Classificações de intenções Redução de dimensão Representações de texto Transformadores Clustering Unsupervised Intent clustering Dimension reduction Embeddings Text representation Transformers Engenharia Informática . Faculdade de Ciências Exatas e da Engenharia