Repository logo
 
Publication

Multiple Time Series Fusion Based on LSTM: An Application to CAP A Phase Classification Using EEG

dc.contributor.authorMendonça, Fábio
dc.contributor.authorMostafa, Sheikh Shanawaz
dc.contributor.authorFreitas, Diogo
dc.contributor.authorDias, Fernando Morgado
dc.contributor.authorRavelo-García, Antonio G.
dc.date.accessioned2023-06-01T14:35:10Z
dc.date.available2023-06-01T14:35:10Z
dc.date.issued2022
dc.description.abstractThe Cyclic Alternating Pattern (CAP) is a periodic activity detected in the electroencephalo gram (EEG) signals. This pattern was identified as a marker of unstable sleep with several possible clinical applications; however, there is a need to develop automatic methodologies to facilitate real-world applications based on CAP assessment. Therefore, a deep learning-based EEG channels’ feature level fusion was proposed in this work and employed for the CAP A phase classification. Two optimization algorithms optimized the channel selection, fusion, and classification procedures. The developed methodologies were evaluated by fusing the information from multiple EEG channels for patients with nocturnal frontal lobe epilepsy and patients without neurological disorders. Results showed that both optimization algorithms selected a comparable structure with similar feature level fusion, consisting of three electroencephalogram channels (Fp2–F4, C4–A1, F4–C4), which is in line with the CAP protocol to ensure multiple channels’ arousals for CAP detection. Moreover, the two optimized models reached an area under the receiver operating characteristic curve of 0.82, with average accuracy ranging from 77% to 79%, a result in the upper range of the specialist agreement and best state-of-the-art works, despite a challenging dataset. The proposed methodology also has the advantage of providing a fully automatic analysis without requiring any manual procedure. Ultimately, the models were revealed to be noise-resistant and resilient to multiple channel loss, being thus suitable for real-world application.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMendonça, F.; Mostafa, S.S.; Freitas, D.; Morgado-Dias, F.; Ravelo-García, A.G. Multiple Time Series Fusion Based on LSTM: An Application to CAP A Phase Classification Using EEG. Int. J. Environ. Res. Public Health 2022, 19, 10892. https://doi.org/10.3390/ ijerph191710892pt_PT
dc.identifier.doi10.3390/ijerph191710892pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.13/5214
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationUser Profiling: An AGM-Based Belief Revision Approach Applied to Dynamic of Profiles
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectCAP A phasept_PT
dc.subjectGenetic algorithmpt_PT
dc.subjectInformation fusionpt_PT
dc.subjectParticle Swarm optimizationpt_PT
dc.subjectLSTMpt_PT
dc.subject.pt_PT
dc.subjectEscola Superior de Tecnologias e Gestãopt_PT
dc.subjectFaculdade de Ciências Exatas e da Engenhariapt_PT
dc.titleMultiple Time Series Fusion Based on LSTM: An Application to CAP A Phase Classification Using EEGpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleUser Profiling: An AGM-Based Belief Revision Approach Applied to Dynamic of Profiles
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//2021.07966.BD/PT
oaire.citation.issue17pt_PT
oaire.citation.startPage10892pt_PT
oaire.citation.titleInternational Journal of Environmental Research and Public Healthpt_PT
oaire.citation.volume19pt_PT
person.familyNameSilva Mendonça
person.familyNameMostafa
person.familyNameTeixeira Freitas
person.familyNameMorgado-Dias
person.familyNameRavelo-García
person.givenNameFábio Rúben
person.givenNameSheikh Shanawaz
person.givenNameDiogo Nuno
person.givenNameFernando
person.givenNameAntonio G.
person.identifier34497
person.identifieryfy16oUAAAAJ
person.identifier.ciencia-id7F1E-8AE9-3098
person.identifier.ciencia-idEE14-BEB3-F82B
person.identifier.ciencia-id9C13-AF9C-25F3
person.identifier.ciencia-id7B14-DF07-AA6D
person.identifier.orcid0000-0002-5107-3248
person.identifier.orcid0000-0002-7677-0971
person.identifier.orcid0000-0002-2351-8676
person.identifier.orcid0000-0001-7334-3993
person.identifier.orcid0000-0002-8512-965X
person.identifier.ridN-9228-2015
person.identifier.scopus-author-id55489640900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication0dbad4bf-3a0c-4c43-8022-42199a5e09c0
relation.isAuthorOfPublicationf90aafd0-eedb-47ea-945a-40b1c1fe802a
relation.isAuthorOfPublicationb71e6dc9-523a-4300-92c3-4c459023a98c
relation.isAuthorOfPublication042f7593-c6ca-4553-8f0e-12ccf17018be
relation.isAuthorOfPublication866dcd15-c600-4e6a-8a06-48c3d58a69a5
relation.isAuthorOfPublication.latestForDiscoveryf90aafd0-eedb-47ea-945a-40b1c1fe802a
relation.isProjectOfPublication77b5ae6c-67a6-4f0f-b9bc-bb900a9c939b
relation.isProjectOfPublication.latestForDiscovery77b5ae6c-67a6-4f0f-b9bc-bb900a9c939b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ijerph-19-10892.pdf
Size:
3.95 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: