Repository logo
 
Publication

Heuristic Optimization of Deep and Shallow Classifiers: An Application for Electroencephalogram Cyclic Alternating Pattern Detection

dc.contributor.authorMendonça, Fábio
dc.contributor.authorMostafa, Sheikh Shanawaz
dc.contributor.authorFreitas, Diogo
dc.contributor.authorDias, Fernando Morgado
dc.contributor.authorRavelo-García, Antonio G.
dc.date.accessioned2023-06-01T14:00:22Z
dc.date.available2023-06-01T14:00:22Z
dc.date.issued2022
dc.description.abstractMethodologies for automatic non-rapid eye movement and cyclic alternating pattern analysis were proposed to examine the signal from one electroencephalogram monopolar derivation for the A phase, cyclic alternating pattern cycles, and cyclic alternating pattern rate assessments. A population composed of subjects free of neurological disorders and subjects diagnosed with sleep-disordered breathing was studied. Parallel classifications were performed for non-rapid eye movement and A phase estimations, examining a one-dimension convolutional neural network (fed with the electroencephalogram signal), a long short-term memory (fed with the electroencephalogram signal or with proposed features), and a feed-forward neural network (fed with proposed features), along with a finite state machine for the cyclic alternating pattern cycle scoring. Two hyper-parameter tuning algorithms were developed to optimize the classifiers. The model with long short-term memory fed with proposed features was found to be the best, with accuracy and area under the receiver operating characteristic curve of 83% and 0.88, respectively, for the A phase classification, while for the non-rapid eye movement estimation, the results were 88% and 0.95, respectively. The cyclic alternating pattern cycle classification accuracy was 79% for the same model, while the cyclic alternating pattern rate percentage error was 22%.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMendonça, F.; Mostafa, S.S.; Freitas, D.; Dias, F. M.; Ravelo-García, A.G. Heuristic Optimization of Deep and Shallow Classifiers: An Application for Electroencephalogram Cyclic Alternating Pattern Detection. Entropy 2022, 24, 688. https:// doi.org/10.3390/e24050688pt_PT
dc.identifier.doi10.3390/e24050688pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.13/5213
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationUser Profiling: An AGM-Based Belief Revision Approach Applied to Dynamic of Profiles
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subject1D-CNNpt_PT
dc.subjectANNpt_PT
dc.subjectCAPpt_PT
dc.subjectHOSApt_PT
dc.subjectLSTMpt_PT
dc.subject.pt_PT
dc.subjectEscola Superior de Tecnologias e Gestãopt_PT
dc.subjectFaculdade de Ciências Exatas e da Engenhariapt_PT
dc.titleHeuristic Optimization of Deep and Shallow Classifiers: An Application for Electroencephalogram Cyclic Alternating Pattern Detectionpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleUser Profiling: An AGM-Based Belief Revision Approach Applied to Dynamic of Profiles
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//2021.07966.BD/PT
oaire.citation.issue5pt_PT
oaire.citation.startPage688pt_PT
oaire.citation.titleEntropypt_PT
oaire.citation.volume24pt_PT
person.familyNameSilva Mendonça
person.familyNameMostafa
person.familyNameTeixeira Freitas
person.familyNameMorgado-Dias
person.familyNameRavelo-García
person.givenNameFábio Rúben
person.givenNameSheikh Shanawaz
person.givenNameDiogo Nuno
person.givenNameFernando
person.givenNameAntonio G.
person.identifier34497
person.identifieryfy16oUAAAAJ
person.identifier.ciencia-id7F1E-8AE9-3098
person.identifier.ciencia-idEE14-BEB3-F82B
person.identifier.ciencia-id9C13-AF9C-25F3
person.identifier.ciencia-id7B14-DF07-AA6D
person.identifier.orcid0000-0002-5107-3248
person.identifier.orcid0000-0002-7677-0971
person.identifier.orcid0000-0002-2351-8676
person.identifier.orcid0000-0001-7334-3993
person.identifier.orcid0000-0002-8512-965X
person.identifier.ridN-9228-2015
person.identifier.scopus-author-id55489640900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication0dbad4bf-3a0c-4c43-8022-42199a5e09c0
relation.isAuthorOfPublicationf90aafd0-eedb-47ea-945a-40b1c1fe802a
relation.isAuthorOfPublicationb71e6dc9-523a-4300-92c3-4c459023a98c
relation.isAuthorOfPublication042f7593-c6ca-4553-8f0e-12ccf17018be
relation.isAuthorOfPublication866dcd15-c600-4e6a-8a06-48c3d58a69a5
relation.isAuthorOfPublication.latestForDiscoveryf90aafd0-eedb-47ea-945a-40b1c1fe802a
relation.isProjectOfPublication77b5ae6c-67a6-4f0f-b9bc-bb900a9c939b
relation.isProjectOfPublication.latestForDiscovery77b5ae6c-67a6-4f0f-b9bc-bb900a9c939b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
entropy-24-00688-v3.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: