Repository logo
 
Publication

Numerical modeling and optimization of self-compacting mortars: central composite design approach with

dc.contributor.authorCangussu, Nara
dc.contributor.authorMatos, Ana Mafalda
dc.contributor.authorMaia, Lino
dc.date.accessioned2024-02-01T12:36:34Z
dc.date.available2024-02-01T12:36:34Z
dc.date.issued2022
dc.description.abstractThe current work developed Statistical models to reach high-performance self compacting cement-based mortars for structural purposes. A central composite design approach was employed to describe mortar fresh and hardened properties (mechanical strength) in function of key mortar mixture design parameters. The fitted models allow to model and predict flowability and viscosity properties and find a range where self-compacting behavior existed. Sand to mortar volume ratio exhibited the main effect on flowability and viscosity, with a positive effect, which is explained by decreases in paste volume. As expected, the water to cement volume ratio had the highest effect on both flexure and mechanical strength of mortars.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCangussu, N., Matos, A. M., & Maia, L. (2022). Numerical modeling and optimization of self-compacting mortars: central composite design approach with. In International Conference on Mathematical Analysis and Applications in Science and Engineering ICMA2SC'22-Book of Extended Abstracts.pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.13/5514
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherInstituto Superior de Engenharia do Portopt_PT
dc.relationInstitute of R&D in Structures and Construction
dc.relationNot Available
dc.relationCement-based composites shift to Industry 4.0: performance-based mix design methodology, assessment and quality control
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectDesign of experimentspt_PT
dc.subjectResponse modelpt_PT
dc.subject.pt_PT
dc.subjectFaculdade de Ciências Exatas e da Engenhariapt_PT
dc.titleNumerical modeling and optimization of self-compacting mortars: central composite design approach withpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleInstitute of R&D in Structures and Construction
oaire.awardTitleNot Available
oaire.awardTitleCement-based composites shift to Industry 4.0: performance-based mix design methodology, assessment and quality control
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04708%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/CEEC INST 2018/CEECINST%2F00049%2F2018%2FCP1524%2FCT0001/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/CEEC IND4ed/2021.01765.CEECIND%2FCP1679%2FCT0004/PT
oaire.citation.conferencePlacePorto (Portugal)pt_PT
oaire.citation.endPage532pt_PT
oaire.citation.startPage529pt_PT
oaire.citation.titleInternational Conference on Mathematical Analysis and Applications in Science and Engineering ICMA2SC'22 - Book of Extended Abstractspt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamCEEC INST 2018
oaire.fundingStreamCEEC IND4ed
person.familyNameSerra Maia
person.givenNameLino Manuel
person.identifierR-000-97W
person.identifier.ciencia-idB711-823E-18C5
person.identifier.orcid0000-0002-6371-0179
person.identifier.scopus-author-id37051068400
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication3843bbca-e366-4c2f-ba3a-1b950a201d4b
relation.isAuthorOfPublication.latestForDiscovery3843bbca-e366-4c2f-ba3a-1b950a201d4b
relation.isProjectOfPublicationabd7f324-6515-4266-9436-ffcb0514f942
relation.isProjectOfPublicatione828512c-37f5-44e3-8abc-49733d0c863a
relation.isProjectOfPublication20430a62-bfee-4a58-b9b5-591596cecac6
relation.isProjectOfPublication.latestForDiscovery20430a62-bfee-4a58-b9b5-591596cecac6

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Numerical modeling and optimization of self-compacting mortars.pdf
Size:
69.32 MB
Format:
Adobe Portable Document Format