Repository logo
 
Publication

The Potential of Machine Learning for Wind Speed and Direction Short-Term Forecasting: A Systematic Review

dc.contributor.authorAlves, Décio
dc.contributor.authorMendonça, Fábio
dc.contributor.authorMostafa, Sheikh Shanawaz
dc.contributor.authorDias, Fernando Morgado
dc.date.accessioned2024-02-19T10:36:20Z
dc.date.available2024-02-19T10:36:20Z
dc.date.issued2023
dc.description.abstractWind forecasting, which is essential for numerous services and safety, has significantly improved in accuracy due to machine learning advancements. This study reviews 23 articles from 1983 to 2023 on machine learning for wind speed and direction nowcasting. The wind prediction ranged from 1 min to 1 week, with more articles at lower temporal resolutions. Most works employed neural networks, focusing recently on deep learning models. Among the reported performance metrics, the most prevalent were mean absolute error, mean squared error, and mean absolute percentage error. Considering these metrics, the mean performance of the examined works was 0.56 m/s, 1.10 m/s, and 6.72%, respectively. The results underscore the novel effectiveness of machine learning in predicting wind conditions using high-resolution time data and demonstrated that deep learning models surpassed traditional methods, improving the accuracy of wind speed and direction forecasts. Moreover, it was found that the inclusion of non-wind weather variables does not benefit the model’s overall performance. Further studies are recommended to predict both wind speed and direction using diverse spatial data points, and high-resolution data are recommended along with the usage of deep learning models.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationAlves, D.; Mendonça, F.; Mostafa, S.S.; Morgado-Dias, F. The Potential of Machine Learning for Wind Speed and Direction Short-Term Forecasting: A Systematic Review. Computers 2023, 12, 206. https://doi.org/10.3390/ computers12100206pt_PT
dc.identifier.doi10.3390/computers12100206pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.13/5562
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationLaboratory of Robotics and Engineering Systems
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectDeep learningpt_PT
dc.subjectMachine learningpt_PT
dc.subjectNowcastpt_PT
dc.subjectWind speedpt_PT
dc.subjectWind directionpt_PT
dc.subjectWindpt_PT
dc.subject.pt_PT
dc.subjectFaculdade de Ciências Exatas e da Engenhariapt_PT
dc.titleThe Potential of Machine Learning for Wind Speed and Direction Short-Term Forecasting: A Systematic Reviewpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleLaboratory of Robotics and Engineering Systems
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50009%2F2020/PT
oaire.citation.issue10pt_PT
oaire.citation.startPage206pt_PT
oaire.citation.titleComputerspt_PT
oaire.citation.volume12pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameAlves
person.familyNameSilva Mendonça
person.familyNameMostafa
person.familyNameMorgado-Dias
person.givenNameDecio
person.givenNameFábio Rúben
person.givenNameSheikh Shanawaz
person.givenNameFernando
person.identifier34497
person.identifier.ciencia-id7F1E-8AE9-3098
person.identifier.ciencia-idEE14-BEB3-F82B
person.identifier.ciencia-id7B14-DF07-AA6D
person.identifier.orcid0009-0001-2972-6505
person.identifier.orcid0000-0002-5107-3248
person.identifier.orcid0000-0002-7677-0971
person.identifier.orcid0000-0001-7334-3993
person.identifier.ridN-9228-2015
person.identifier.scopus-author-id55489640900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication350cb581-0701-46a0-ac7f-fd855bc55dfa
relation.isAuthorOfPublication0dbad4bf-3a0c-4c43-8022-42199a5e09c0
relation.isAuthorOfPublicationf90aafd0-eedb-47ea-945a-40b1c1fe802a
relation.isAuthorOfPublication042f7593-c6ca-4553-8f0e-12ccf17018be
relation.isAuthorOfPublication.latestForDiscovery350cb581-0701-46a0-ac7f-fd855bc55dfa
relation.isProjectOfPublicationc0352e81-99e6-4923-99ed-074df09e4db0
relation.isProjectOfPublication.latestForDiscoveryc0352e81-99e6-4923-99ed-074df09e4db0

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The Potential of Machine Learning for Wind Speed and Direction Short-Term Forecasting.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: