Repository logo
 
Publication

On invariant Rings of Sylow subgroups of finite classical groups

dc.contributor.advisorPeter Fleischmann
dc.contributor.authorFerreira, Jorge Nélio Marques
dc.date.accessioned2011-10-12T13:39:14Z
dc.date.available2011-10-12T13:39:14Z
dc.date.issued2011
dc.description.abstractIn this thesis we study the invariant rings for the Sylow p-subgroups of the nite classical groups. We have successfully constructed presentations for the invariant rings for the Sylow p-subgroups of the unitary groups GU(3; Fq2) and GU(4; Fq2 ), the symplectic group Sp(4; Fq) and the orthogonal group O+(4; Fq) with q odd. In all cases, we obtained a minimal generating set which is also a SAGBI basis. Moreover, we computed the relations among the generators and showed that the invariant ring for these groups are a complete intersection. This shows that, even though the invariant rings of the Sylow p-subgroups of the general linear group are polynomial, the same is not true for Sylow p-subgroups of general classical groups. We also constructed the generators for the invariant elds for the Sylow p-subgroups of GU(n; Fq2 ), Sp(2n; Fq), O+(2n; Fq), O-(2n + 2; Fq) and O(2n + 1; Fq), for every n and q. This is an important step in order to obtain the generators and relations for the invariant rings of all these groups.por
dc.identifier.urihttp://hdl.handle.net/10400.13/177
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherUniversity of Kentpor
dc.subjectModular invariant theorypor
dc.subjectFinite classical groupspor
dc.subjectp-Groupspor
dc.subjectInvariant fieldspor
dc.subjectInvariant ringspor
dc.subjectSAGBI Basespor
dc.subjectComplete Intersectionspor
dc.subject.por
dc.titleOn invariant Rings of Sylow subgroups of finite classical groupspor
dc.typedoctoral thesis
dspace.entity.typePublication
person.familyNameMarques Ferreira
person.givenNameJorge Nélio
person.identifier.orcid0000-0003-1364-5791
rcaap.rightsopenAccesspor
rcaap.typedoctoralThesispor
relation.isAuthorOfPublicationb136ee8d-f897-4ac6-a748-1fe2606bbbbf
relation.isAuthorOfPublication.latestForDiscoveryb136ee8d-f897-4ac6-a748-1fe2606bbbbf

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DoutoramentoJorgeFerreira.pdf
Size:
592.5 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: