Publication
Prediction of the Potential Distribution of Drosophila suzukii on Madeira Island Using the Maximum Entropy Modeling
dc.contributor.author | Macedo, Fabrício Lopes | |
dc.contributor.author | Ragonezi, Carla | |
dc.contributor.author | Reis, Fábio | |
dc.contributor.author | Freitas, José G. R. de | |
dc.contributor.author | Lopes, David Horta | |
dc.contributor.author | Aguiar, António Miguel Franquinho | |
dc.contributor.author | Cravo, Délia | |
dc.contributor.author | Carvalho, Miguel A. A. Pinheiro de | |
dc.date.accessioned | 2024-01-08T13:45:11Z | |
dc.date.available | 2024-01-08T13:45:11Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Drosophila suzukii is one of the main pests that attack soft-skinned fruits and cause significant economic damage worldwide. Madeira Island (Portugal) is already affected by this pest. The present work aimed to investigate the potential distribution of D. suzukii on Madeira Island to better understand the limits of its geographical distribution on the island using the Maximum Entropy modeling (MaxEnt). The resultant model provided by MaxEnt was rated as regular discrimination with the area under the curve (AUC, 0.7–0.8). Upon scrutinizing the environmental variables with the greatest impact on the distribution of D. suzukii, altitude emerged as the dominant contributor, with the highest percentage (71.2%). Additionally, elevations ranging from 0 to 500 m were identified as appropriate for the species distribution. With the results of the model, it becomes possible to understand/predict which locations will be most suitable for the establishment of the analyzed pest and could be further applied not only for D. suzukii but also for other species that hold the potential for substantial economic losses in this insular region. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Macedo, F.L.; Ragonezi, C.; Reis, F.; de Freitas, J.G.R.; Lopes, D.H.; Aguiar, A.M.F.; Cravo, D.; Carvalho, M.A.A.P.d. Prediction of the Potential Distribution of Drosophila suzukii on Madeira Island Using the Maximum Entropy Modeling. Agriculture 2023, 13, 1764. https://doi.org/10.3390/ agriculture13091764 | pt_PT |
dc.identifier.doi | 10.3390/agriculture13091764 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.13/5463 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | MDPI | pt_PT |
dc.relation | Centre for the Research and Technology of Agro-Environmental and Biological Sciences | |
dc.relation | Centre for the Research and Technology of Agro-Environmental and Biological Sciences | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Habitat suitability | pt_PT |
dc.subject | Maximum entropy | pt_PT |
dc.subject | Ecological niche model | pt_PT |
dc.subject | Information system | pt_PT |
dc.subject | Modeling training | pt_PT |
dc.subject | Machine learning | pt_PT |
dc.subject | Drosophilidae | pt_PT |
dc.subject | . | pt_PT |
dc.subject | Escola Superior de Tecnologias e Gestão | pt_PT |
dc.subject | Faculdade de Ciências da Vida | pt_PT |
dc.title | Prediction of the Potential Distribution of Drosophila suzukii on Madeira Island Using the Maximum Entropy Modeling | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Centre for the Research and Technology of Agro-Environmental and Biological Sciences | |
oaire.awardTitle | Centre for the Research and Technology of Agro-Environmental and Biological Sciences | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04033%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04033%2F2020/PT | |
oaire.citation.issue | 9 | pt_PT |
oaire.citation.startPage | 1764 | pt_PT |
oaire.citation.title | Agriculture | pt_PT |
oaire.citation.volume | 13 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Macedo | |
person.familyName | Ragonezi | |
person.familyName | Horta Lopes | |
person.familyName | Almeida Pinheiro de Carvalho | |
person.givenName | Fabrício Lopes de | |
person.givenName | Carla | |
person.givenName | David | |
person.givenName | Miguel Angelo | |
person.identifier | 2439118 | |
person.identifier | 1218558 | |
person.identifier.ciencia-id | BD1F-4778-60D1 | |
person.identifier.ciencia-id | FC12-D3F0-EF3D | |
person.identifier.ciencia-id | 4A11-1CA3-AF88 | |
person.identifier.ciencia-id | 4610-6741-6816 | |
person.identifier.orcid | 0000-0002-8025-6422 | |
person.identifier.orcid | 0000-0002-1822-5473 | |
person.identifier.orcid | 0000-0002-3057-5871 | |
person.identifier.orcid | 0000-0002-5084-870X | |
person.identifier.rid | AEE-0913-2022 | |
person.identifier.scopus-author-id | 36460033800 | |
person.identifier.scopus-author-id | 25629458300 | |
person.identifier.scopus-author-id | 8758577600 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 0cae1387-e03a-4cd4-bd47-c48edc60ad27 | |
relation.isAuthorOfPublication | a51cc988-63ce-40e5-9b71-a27b1eadc937 | |
relation.isAuthorOfPublication | fa80acc6-1f8c-474d-8d54-8a7ed37e5dd9 | |
relation.isAuthorOfPublication | 2e433c48-88f8-40a2-b21f-de78b44aab1c | |
relation.isAuthorOfPublication.latestForDiscovery | fa80acc6-1f8c-474d-8d54-8a7ed37e5dd9 | |
relation.isProjectOfPublication | 0fbc36e7-b7eb-44ee-8858-fb77c563003b | |
relation.isProjectOfPublication | 53f600b8-a43f-4466-bfd6-d6565b137631 | |
relation.isProjectOfPublication.latestForDiscovery | 53f600b8-a43f-4466-bfd6-d6565b137631 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Prediction of the Potential Distribution of Drosophila suzukii on Madeira Island Using the Maximum Entropy Modeling.pdf
- Size:
- 5.14 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: