Repository logo
 
Loading...
Thumbnail Image
Publication

Enantioseparation and chiral recognition mechanism of new chiral derivatives of xanthones on macrocyclic antibiotic stationary phases

Use this identifier to reference this record.

Advisor(s)

Abstract(s)

A chiral HPLC method using four macrocyclic antibiotic chiral stationary phases (CSPs) has been inves tigated for determination of the enantiomeric purity of fourteen new chiral derivatives of xanthones (CDXs). The separations were performed with the CSPs Chirobiotic T, Chirobiotic TAG, Chirobiotic V and Chirobiotic R under multimodal elution conditions (normal-phase, reversed-phase and polar ionic mode). The analyses were performed at room temperature in isocratic mode and UV and CD detection at a wavelength of 254 nm. The best enantioselectivity and resolution were achieved on Chirobiotic R and Chirobiotic T CSPs, under normal elution conditions, with RS ranging from 1.25 to 2.50 and from 0.78 to 2.06, respectively. The optimized chromatographic conditions allowed the determination of the enan tiomeric ratio of eight CDXs, always higher than 99%. In order to better understand the chromatographic behavior at a molecular level, and the structural features associated with the chiral recognition mech anism, computational studies by molecular docking were carried out using VDock. These studies shed light on the mechanisms involved in the enantioseparation for this important class of chiral compounds.

Description

Keywords

Macrocyclic antibiotic Chiral stationary phases Chiral derivatives of xanthones Enantioselectivity Enantiomeric purity Chiral recognition . Faculdade de Ciências Exatas e da Engenharia

Citation

Fernandes, C., Tiritan, M. E., Cass, Q., Kairys, V., Fernandes, M. X., & Pinto, M. (2012). Enantioseparation and chiral recognition mechanism of new chiral derivatives of xanthones on macrocyclic antibiotic stationary phases. Journal of Chromatography A, 1241, 60-68.

Organizational Units

Journal Issue