Repository logo
 
Loading...
Thumbnail Image
Publication

Numerical Design and Optimisation of Self-Compacting High Early-Strength Cement-Based Mortars

Use this identifier to reference this record.

Advisor(s)

Abstract(s)

The use of SCC in Europe began in the 1990s and was mainly promoted by the precast industry. Precast companies generally prefer high early-strength concrete mixtures to accelerate their production rate, reducing the demoulding time. From a materials science point of view, self-compacting and high early-strength concrete mixes may be challenging because they present contradicting mixture design requirements. For example, a low water/binder ratio (w/b) is key to achieving high early strength. However, it may impact the self-compacting ability, which is very sensitive to Vw/Vp. As such, the mixture design can be complex. The design of the experimental approach is a powerful tool for designing, predicting, and optimising advanced cement-based materials when several constituent materials are employed and multi-performance requirements are targeted. The current work aimed at fitting models to mathematically describe the flow ability, viscosity, and mechanical strength properties of high-performance self-compacting cement-based mortars based on a central composite design. The statistical fitted models revealed that Vs/Vm exhibited the strongest (negative) effect on the slump-flow diameter and T-funnel time. Vw/Vp showed the most significant effect on mechanical strength. Models were then used for mortar optimisation. The proposed optimal mixture represents the best compromise between self-compacting ability—a flow diameter of 250 mm and funnel time equal to 10 s—and compressive strength higher than 50 MPa at 24 h without any special curing treatment.

Description

Keywords

Self-compacting concrete High early strength Mixture design Design of experiments Response model Faculdade de Ciências Exatas e da Engenharia

Citation

Cangussu, N.; Matos, A.M.; Milheiro-Oliveira, P.; Maia, L. Numerical Design and Optimisation of Self-Compacting High Early-Strength Cement-Based Mortars. Appl. Sci. 2023, 13, 4142. https://doi.org/10.3390/ app13074142

Organizational Units

Journal Issue

Publisher

MDPI

CC License

Altmetrics