Browsing by Author "Kaufmann, Manfred J."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Local–regional richness relationship in fouling assemblages – effects of successionPublication . Canning-Clode, João; Bellou, Nikoleta; Kaufmann, Manfred J.; Wahl, MartinThe number of species in a local habitat depends on local and regional processes. One common approach to explore ecological saturation of local richness has been to plot local versus regional richness. We expand this approach by incorporating two dimensions of diversity – taxonomic and functional – and different successional ages of marine fouling communities. In four different biogeographic regions (Mediterranean Sea, NE Atlantic, Western Baltic Sea and North Sea) 60 experimental units made from artificial substratum were deployed for colonization. Local richness was assessed as the average number of species and functional groups (FG) per unit area while regional richness was estimated as the estimated (Jack 2) asymptote of the accumulation curves for species or FG in local panel communities. Our findings indicate that the nature of the relationship between local and regional diversity is sensitive to successional stage and the dimension of diversity considered. However, as a general pattern, for taxonomic and functional richness, the slope of the local–regional relationship increased in the course of succession. We discuss how this pattern could have been produced by a combination of low number of recruiting species and incomplete competitive exclusion as is typical for early succession.
- Morphological and molecular phylogenetic identification and record verification of Gambierdiscus excentricus (Dinophyceae) from Madeira Island (NE Atlantic Ocean)Publication . Hoppenrath, Mona; Kretzschmar, A. Liza; Kaufmann, Manfred J.; Murray, Shauna A.The marine benthic dinoflagellate genus Gambierdiscus currently contains ~ 16 species that can be highly morphologically similar to one another, and therefore molecular genetic characterization is necessary to complement the morphological species determination. Gambierdiscus species can produce ciguatoxins, which can accumulate through the food chain and cause ciguatera fish poisoning. Recent studies have suggested that Gambierdiscus excentricus may be one of the main species responsible for ciguatoxin production in the temperate and tropical regions of the eastern Atlantic. The present study definitively identifies the species, G. excentricus, from Madeira Island, Northeast-Atlantic Ocean (32° 38′ N 16° 56′ W) by examining the morphology of a strain using light and scanning electron microscopy and sequencing regions of the ribosomal DNA (D8-D10 LSU, SSU rDNA). Variability in the shape of the apical pore and the microarchitecture of the apical pore plate were documented for the first time, as well as variability in the width of the second antapical plate. The first SSU rDNA sequence for the species is reported. Because G. excentricus is known to produce high levels of CTX-like compounds, its presence and toxicity should be regularly monitored to establish whether it is the primary cause of the ciguatera poisoning events on Madeira Island.
- New species and new records of bryozoans from shallow waters of Madeira IslandPublication . Souto, Javier; Kaufmann, Manfred J.; Canning-Clode, JoãoTwo new species of bryozoans encrusting subtidal rocks are described from the shallow waters of Madeira Island. We de scribe one cyclostome, Favosipora purpurea sp. nov., which represents the first record of this genus in the Atlantic Ocean, and one cheilostome, Rhynchozoon papuliferum sp. nov. In addition, one species, Beania maxilladentata, is recorded for the first time outside of Rio de Janeiro, Brazil. Six other species previously recorded in Madeira are redescribed to provide new data and SEM images.
- Re-structuring of marine communities exposed to environmental change: a global study on the interactive effects of species and functional richnessPublication . Wahl, Martin; Link, Heike; Alexandridis, Nicolaos; Thomason, Jeremy C.; Cifuentes, Mauricio; Costello, Mark J.; Gama, Bernardo A. P. da; Hillock, Kristina; Hobday, Alistair J.; Kaufmann, Manfred J.; Keller, Stefanie; Kraufvelin, Patrik; Krüger, Ina; Lauterbach, Lars; Antunes, Bruno L.; Molis, Markus; Nakaoka, Masahiro; Nyström, Julia; bin Radzi, Zulkamal; Stockhausen, Björn; Thiel, Martin; Vance, Thomas; Weseloh, Annika; Whittle, Mark; Wiesmann, Lisa; Wunderer, Laura; Yamakita, Takehisa; Lenz, MarkSpecies richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research.