Repository logo
 

Search Results

Now showing 1 - 6 of 6
  • Abscisic acid phytohormone estimation in tubers and shoots of Ipomoea batatas subjected to long drought stress using competitive immunological assay
    Publication . Gouveia, Carla S. S.; Ganança, José F. T.; Slaski, Jan J.; Lebot, Vincent; Carvalho, Miguel Â. A. Pinheiro de
    Sweet potato (Ipomoea batatas L.), typically cultivated in temperate climates under low inputs, is one of the most important crops worldwide. Abscisic acid (ABA) is an important plant stress-induced phytohormone. Hitherto, few works analyzed the ABA function in sweet potato tissue growth. Very scarce information is available concerning the ABA role in sweet potato response to water scarcity conditions. Here, we show the ABA content var iation in shoots and tubers of eight sweet potato accessions subjected to drought stress. ABA was also related to other resistance traits, such as chlo rophyll content index (CCI), carbon isotopic discrimination (Δ13C), oxalic acid (OA) and water use efficiency (WUE), to assess stress response mecha nisms to water deficit between their organs. The most resilient drought stressed sweet potato plants accumulated ABA-shoot, and significantly decreased the ABA-tuber content. ABA signaling was related to Δ13C and CCI decrease and WUE increment, as an attempt to cope with water stress by partially closing the stomata. The partial closure of stomata could be in part due to the presence of OA-shoots, known to affect the intensity of the ABA-shoot signal in stomatal closure. Higher CCI content and minimal Δ13C-shoot differences indicated good carboxylation fractionation, with higher Δ13C-tuber content as an indicator of efficient tuber 13C fixation and growth. Our work demonstrated that ABA could be used in conjunction with the other traits studied for the assessment of sweet potato whole-plant responses to environmental stresses, and thus aid the selection of the best drought tolerant genotypes for breeding programs.
  • Screening for drought tolerance in thirty three Taro cultivars
    Publication . Ganança, José F. T.; Freitas, José G. R.; Nóbrega, Humberto G.M.; Rodrigues, Vanessa; Antunes, Gonçalo; Gouveia, Carla S. S.; Rodrigues, Miguel; Chair, Hana; Carvalho, Miguel A. A. Pinheiro de; Lebot, Vincent
    Taro [Colocasia esculenta (L.) Schott] is a root crop which is an important staple food in many regions of the world, producing 10.5 million tonnes on 1.4 million hectares a year. The crop is cultivated in wet (rain fed) or irrigated conditions, requiring on average 2,500 mm water per year, and in many countries it is cultivated in flooded plots. It is estimated that taro production could decrease by 40% as a result of the increase in drought and other severe events. In this work, thirty three accessions, including local cultivars, selected and hybrid lines were submitted to long duration drought stress and screened for tolerance. Twelve physiological, morphological and agronomic traits were measured at harvest, and subject to multivariate analysis. Stress indices, Water Use Efficiency and Factorial Analysis were useful for discriminating accessions regarding drought tolerance and yield stability, and drought tolerant and susceptible cultivars were identified. Our results confirm that different taro cultivars have different drought avoidance and tolerance strategies to cope with water scarcity. Better yield performers minimised biomass and canopy loss, while tolerance was observed in cultivars that presented low potential yield, but efficiently transferred resources to enhance corm formation. Among the 33 accessions, two local cultivars showed high yield stability and could be considered as suitable parents for breeding programs, while two others are well adapted to drought, but with overall low yield potential.
  • Phenotyping the ideotypes of two maize landraces from Madeira archipelago using morpho-agronomic traits and zein pattern
    Publication . Carvalho, Miguel Â. A. Pinheiro de; Sardinha, Carmen M. S.; Gouveia, Carla S.S.; Silva, Emanuel M. da; Nóbrega, Humberto G. M.; Ganança, José F. T.; Nóbrega, Sónia R.; Santos, Teresa M. M. dos
    Madeira Archipelago holds specific maize genetic resources whose populations, representing field diversity, were previously classified into four main landrace groups. The ISOPs 0061 and 0070, with common names of “Milho Sequeiro” and “Milho Branco” yellow and white maize, respectively, represent the ideotypes of two of these landraces. These ideotypes have now been analyzed using morpho-agronomic and biochemical traits, to phenotype these landraces. The variation of nine of the ten morpho-agronomic traits was used to separate the landraces ideotypes. However, the seven traits of seed biochemical composition did not allow to segregate the landraces ideotypes. This is not the case of zein pattern, which polymorphism shows to be specific for each ideotype. The original ideotypes populations were regenerated twice under low input conditions. Zein patterns of the original and regenerated accessions were compared, using two electrophoresis techniques. The lab-on-a-chip electrophoresis showed that the standard SDS-PAGE zein pattern with six fractions could be separated into eighteen (ISOP 0061) and twenty (ISOP 0070) protein bands. In contrast, no significant changes were detected in the zein pattern structure of the initial and regenerated accessions of both landraces ideotypes. The chip electrophoresis showed to be a suitable technique to screen and characterize a large number of individuals and accessions of the germplasm collections, due to its reproducibility. In particular, the zein patterns can be used to phenotype ideotypes and establish a formula representing their structure, allowing to detect changes in landrace structure, occurring as a result of gene bank management actions.
  • Drought avoidance and phenotypic flexibility of sweet potato (Ipomoea batatas (L.) Lam.) under water scarcity conditions
    Publication . Gouveia, Carla S. S.; Ganança, José F. T.; Nóbrega, Humberto G. M.; Freitas, José G. R.; Lebot, Vincent; Carvalho, Miguel Â. A. Pinheiro de
    Sweet potato (Ipomoea batatas (L.) Lam.) is an important staple food in several regions of the world. Water scarcity is the most devastating abiotic stress, with a great impact on crop productivity, food security, and subsistence. Drought restricts the nutrient intake and transport into the plant. Tolerant crops have morphological mechanisms of drought avoidance and/or phenotypic flexibility, showing also good water and nutrient efficiency. However, that information is scarce for sweet potato, which is usually based on physiological traits of plant productivity. Here, we show the physiological responses of eight sweet potato accessions subjected to a 3 months’ drought period, by recording their differences for nutrient and leaf chlorophyll content, biomass and stress level. Our results showed that the differences in water use efficiency (WUE, +68.1%), chlorophyll content index (CCI, -5.3%), total plant biomass (TPB, -55.4%), nutrient efficiency (NER, +38.1%) and nutrient harvest index (NHI, +2.9%) where significantly correlated with the water regime. The water shortage led to a drought avoidance response, with TPB loss in all accessions. Distinct phenotypic flexibility responses were also recorded and explained by the root:shoot ratio (R:S) and stress index (SI) variation of the storage root and shoot growth. This information could be relevant for the development of sweet potato breeding programs, adapting this crop to climate change.
  • Phenotypic flexibility and drought avoidance in taro (Colocasia esculenta (L.) Schott)
    Publication . Gouveia, Carla S. S.; Ganança, José F. T.; Nóbrega, Humberto G. M.; Freitas, José G. R. de; Lebot, Vincent; Carvalho, Miguel Â. A. Pinheiro de
    Taro (Colocasia esculenta (L.) Schott) is a substantial staple food in most of the tropical regions. Prolonged exposure to drought impairs crop production worldwide. Tolerant crops have the best capability to cope and avoid drought, through phenotypic flexibility mechanisms. The water use efficiency (WUE) is well known in taro crops, but very scarce information is available relating to their nutrient efficiency (NER) in drought conditions. Our work provided pertinent information about the physiological variation of seven taro accessions subjected to seven months of drought, by recording the differences for nutrient allocation, chlorophyll canopy, biomass loss, and stress intensity. Significant relationships between control and drought treatments on WUE (+85%), total plant biomass (TPB, -26.8%), chlorophyll content index (CCI, +1.8%), and nutrient harvest index (NHI, +0.2%) were detected. Drought led to a generalized loss of TPB as drought avoidance strategy, although distinct phenotypic flexibility was observed through the root: shoot ratio (R:S) and stress index (SI) from the corm and shoot organs. The nutrient allocation from the corms to shoots, with NER increase registered in drought conditions, can be a valuable tool to complement the TPB and WUE productivity traits, to be used in taro breeding programs.
  • Involvement of abscisic acid and other stress indicators in taro (Colocasia esculenta (L.) Schott) response to drought conditions
    Publication . Gouveia, Carla S. S.; Ganança, José F. T.; Slaski, Jan J.; Lebot, Vincent; Carvalho, Miguel Â. A. Pinheiro de
    Taro (Colocasia esculenta (L.) Schott) is a staple food and represents an important food security role in most tropical regions. It is, unfortunately, susceptible to prolonged drought conditions. Abscisic acid (ABA) is a well-documented stress-induced phytohormone that tolerant crops usually accumulate in leaves to induce stomatal closure, preventing water loss through inhibition of transpiration. Hitherto, exists very scarce information regarding the ABA role in taro response to drought. Here, we determined the ABA content in the shoots and corms of taro subjected to seven months of water scarcity and linked ABA to other drought resilience traits, including carbon isotopic discrimination (Δ13C), oxalic acid (OA), chlorophyll content index (CCI), water use efciency (WUE), and biomass (B). The Δ13C-shoot content showed partially open stomata in all accessions, and signifcant correlation with Δ13C-corm, CCI, and WUE. The osmotically active OA-shoot decrease seemed not to interfere with the stomatal aperture. The tolerant accessions subjected to drought stress had higher B-corm, ABA shoot, Δ13C-shoot, CCI, OA, and WUE. However, the observed under drought conditions increase of ABA in the shoots, and its decrease in the corms were not signifcantly correlated, nor with other traits, suggesting that ABA was not the main regulator of taro physiological processes under stress. The information gained should be considered in breeding programs to predict taro’s response to climate change.