Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Analytical methodologies for the determination of biogenic amines in wines: an overview of the recent trendsPublication . Miranda, Andreia; Leça, João M.; Pereira, Vanda; Marques, José CarlosBiogenic amines are naturally present in grapes or can occur during the vinification and aging processes, essentially due to the microorganism’s activity. When present in wines in high amount, biogenic amines may cause not only organoleptic defects but also adverse effects in sensitive human individuals, namely due to the toxicity of histamine, tyramine and putrescine. Even though there are no legal limits for the concentration of biogenic amines in wines, some European countries only recommend maximum limits for histamine. In this sense, biogenic amines in wines have been widely studied. The determination of amines in wines is commonly achieved by liquid chromatography, using derivatization reagents in order to promote its separation and detection. In alternative, other promising methodologies have been developed using capillary electrophoresis or biosensors, revealing lower costs and faster results, without needing a derivatization step. Nowadays, it is still a challenge to develop faster and inexpensive techniques or methodologies to apply in the wine industry. Thus, this review will be focused on the studies published in the last decade that involves the determination of biogenic amines in wines, highlighting the novelty, improvement and optimization of the analytical methods. The sample preparation procedures (such as derivatization reagents), the analytical methodologies and the new trends being followed by the wine industry are also described and discussed.
- Impact of indigenous non-saccharomyces yeasts isolated from Madeira Island vineyards on the formation of ethyl carbamate in the aging of fortified winesPublication . Leça, João Micael; Pereira, Vanda; Miranda, Andreia; Vilchez, José Luis; Malfeito-Ferreira, Manuel; Marques, José CarlosThe impact of selected non-Saccharomyces yeasts on the occurrence of ethyl carbamate (EC) was evaluated. Hanseniaspora uvarum, Starmerella bacillaris, Pichia terricola, Pichia fermentans and Pichia kluyveri isolated from Madeira Island vineyards were inoculated in Tinta Negra musts. Urea, citrulline (Cit) and arginine (Arg) were quantified when the density of musts attained the levels to obtain sweet (1052 ± 5 g/L) and dry (1022 ± 4 g/L) Madeira wines. The urea concentration varied between 1.3 and 5.3 mg/L, Cit from 10.6 to 15.1 mg/L and Arg between 687 and 959 mg/L. P. terricola and S. bacillaris generated lower levels of urea (<2.5 mg/L), Cit (<11.0 mg/L) and Arg (<845.6 mg/L). The five resulting fortified wines, individually fermented by the selected non-Saccharomyces yeast, were exposed to laboratory-accelerated aging at 70 °C for 1 month. From the studied yeasts, P. terricola and S. bacillaris revealed a lower potential to form EC (<100 µg/L); therefore, both yeasts can be a useful tool for its mitigation in wines.
- Impact of Non-Saccharomyces Yeast Fermentation in Madeira Wine Chemical CompositionPublication . Miranda, Andreia; Pereira, Vanda; Jardim, Humberto; Malfeito-Ferreira, Manuel; Marques, José CarlosMadeira wine is produced via spontaneous alcoholic fermentation arrested by ethanol addition. The increasing demand of the wine market has led to the need to standardize the winemak ing process. This study focuses on identifying the microbiota of indigenous yeasts present during Madeira wine fermentation and then evaluates the impact of selected indigenous non-Saccharomyces as pure starter culture (Hanseniaspora uvarum, Starmerella bacillaris, Pichia terricola, Pichia fermentans, and Pichia kluyveri) in the chemical and phenolic characterization of Madeira wine production. Re sults showed that the polyphenol content of the wines was influenced by yeast species, with higher levels found in wines produced by Pichia spp. (ranging from 356.85 to 367.68 mg GAE/L in total polyphenols and 50.52 to 51.50 mg/L in total individual polyphenols through HPLC methods). Antioxidant potential was higher in wines produced with Hanseniaspora uvarum (133.60 mg Trolox/L) and Starmerella bacillaris (137.61 mg Trolox/L). Additionally, Starmerella bacillaris stands out due to its sugar consumption during fermentation (the totality of fructose and 43% of glucose) and 15.80 g/L of total organic acids compared to 9.23 g/L (on average) for the other yeasts. This knowledge can be advantageous to standardizing the winemaking process and increasing the bioactive compounds, resulting in the production of high-quality wines.