Repository logo
 
Loading...
Profile Picture
Person

Vieira de Aguiar, Joselin Maria

Search Results

Now showing 1 - 6 of 6
  • Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study
    Publication . Câmara, José S.; Albuquerque, Bianca R.; Aguiar, Joselin; Corrêa, Rúbia C. G.; Gonçalves, João L.; Granato, Daniel; Pereira, Jorge A. M.; Barros, Lillian; Ferreira, Isabel C. F. R.
    Experimental studies have provided convincing evidence that food bioactive compounds (FBCs) have a positive biological impact on human health, exerting protective effects against non communicable diseases (NCD) including cancer and cardiovascular (CVDs), metabolic, and neu rodegenerative disorders (NDDs). These benefits have been associated with the presence of sec ondary metabolites, namely polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins, and fibres, among others, derived from their antioxidant, antiatherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator properties. Polyphenols as one of the most abundant classes of bioactive compounds present in plant-based foods emerge as a promising approach for the development of efficacious preventive agents against NCDs with reduced side effects. The aim of this review is to present comprehensive and deep insights into the potential of polyphenols, from their chemical structure classification and biosynthesis to preventive effects on NCDs, namely cancer, CVDs, and NDDS. The challenge of polyphenols bioavailability and bioacces sibility will be explored in addition to useful industrial and environmental applications. Advanced and emerging extraction techniques will be highlighted and the high-resolution analytical techniques used for FBCs characterization, identification, and quantification will be considered.
  • Structure assignment of seized products containing cathinone derivatives using high resolution analytical techniques
    Publication . Gonçalves, João L.; Alves, Vera L.; Aguiar, Joselin; Caldeira, Maria J.; Teixeira, Helena M.; Câmara, José S.
    The innovation of the new psychoactive substances (NPS) market requires the rapid identification of new substances that can be a risk to public health, in order to reduce the damage from their use. Twelve seized products suspected to contain illicit substances were analyzed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), gas chromatography coupled to mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy (NMR). Synthetic cathinones (SCat) were found in all products, either as a single component or in mixtures. Infrared spectra of all products were consistent with the molecular structure of SCat, showing an intense absorption band at 1700–1674 cm−1 , corresponding to the carbonyl stretching, a medium/strong peak at 1605–1580 cm−1 , indicating stretching vibrations in the aromatic ring (C=C) and bands with relative low intensity at frequencies near 2700–2400 cm−1 , corresponding to an amine salt. It was possible to identify a total of eight cathinone derivatives by GC-MS and NMR analysis: 40 -methyl-α pyrrolidinohexanophenone (MPHP), α-pyrrolidinohexanophenone (α-PHP), 3-fluoromethcathinone (3-FMC), methedrone, methylone, buphedrone, N-ethylcathinone, and pentedrone. Among the adulterants found in these samples, caffeine was the most frequently detected substance, followed by ethylphenidate. These results highlight the prevalence of SCat in seized materials of the Portuguese market. Reference standards are usually required for confirmation, but when reference materials are not available, the combination of complementary techniques is fundamental for a rapid and an unequivocal identification of such substances.
  • The synthetic cannabinoids phenomenon: from structure to toxicological properties. A review
    Publication . Alves, Vera L.; Gonçalves, João L.; Aguiar, Joselin; Teixeira, Helena M.; Câmara, José S.
    The word “cannabinoid” refers to every chemical substance, regardless of structure or origin, that joins the cannabinoid receptors of the body and brain and that have similar effects to those produced by the Cannabis plant and based on their source of production, cannabinoids can be classified into endocannabinoids, phytocannabinoids and synthetic cannabinoids. Synthetic cannabinoids represent the largest class of drugs detected through the EU Early Warning System with a total of 190 substances notified from 2008 to 2018 and about 280 have been reported worldwide to the United Nations Office on Drugs and Crime. Sprayed on natural herb mixtures with the aim to mimic the euphoria effect of cannabis and sold as “herbal smoking blends” or “herbal incense” under brand names like “Spice” or “K2”, synthetic cannabinoids are available from websites for the combination with herbal materials or more recently, for the use in e-cigarettes. Currently labeled as “not for human consumption” to circum vent legislation, their legal status varies by country with many government institutions currently push ing for their control. However, due to the emergence of new substances, it requires a constant update of the list of controlled drugs. Little is known about how these substances work and their toxic effects in humans and the same product could vary not only in the amount and in the type of substance added. In the last years, synthetic cannabinoids have been associated with deaths and acute intoxica tions in Europe and, despite a range of new measures introduced in this area, continue to represent a challenge to current drug policy models. These synthetic substances are much more potent than nat ural cannabis, as well as displayed greater efficacy, acting as full agonists at the cannabinoid receptors. It is possible that, along with being highly potent, some may also have long half-lives, potentially lead ing to a prolonged psychoactive effect. The present work provides a review on existing literature about the development of synthetic cannabinoids as substances of abuse, current patterns of abuse and their legal status, chemical classification, and some pharmacological and toxicological properties.
  • Plant cell cultures of Nordic berry species: Phenolic and carotenoid profiling and biological assessments
    Publication . Rischer, Heiko; Nohynek, Liisa; Puupponen-Pimiä, Riitta; Aguiar, Joselin; Rocchetti, Gabriele; Lucini, Luigi; Câmara, José S.; Mendanha Cruz, Thiago; Boscacci Marques, Mariza; Granato, Daniel
    Plant cell cultures from cloudberry (CL), lingonberry (LI), stone berry (ST), arctic bramble (AB), and strawberry (SB) were studied in terms of their polyphenol and carotenoid composition, antioxidant activity, antihemolytic activity and cytotoxicity effects on cancerous cells. High-resolution mass spectrometry data showed that LI, presented the highest antioxidant activity, contained the highest contents of flavones, phenolic acids, lignans, and total carotenoids, while CL, ST and SB presented the opposite behavior. AB and SB presented the lowest FRAP and CUPRAC values, while AB and CL presented the lowest reducing power. SB presented the lowest antioxidant activity measured by single electron transfer assays and the lowest content of lignans, phenolic acids, and flavones. CL and LI decreased the viability of in vitro mammary gland adenocarcinoma while only LI decreased the viability of in vitro lung carcinoma and showed protective effects of human erythrocytes against mechanical hemolysis.
  • Relationship between Volatile Composition and Bioactive Potential of Vegetables and Fruits of Regular Consumption—An Integrative Approach
    Publication . Aguiar, Joselin; Gonçalves, João L.; Alves, Vera L.; Câmara, José S.
    In recent years, there has been a growing interest in studying and exploring the potential health benefits of foods, mainly from vegetables and fruits from regular intake. The presence of secondary metabolites, namely polyphenols, carotenoids and terpenes, in certain food matrices seems to contribute to their functional properties, expressed through an increased prevention in the development of certain chronic diseases, namely coronary heart diseases, neurodegenerative diseases, cancer and diabetes. However, some foods’ volatile secondary metabolites also present important bioactive properties, although this is a poorly scientifically explored field. In this context, and in order to explore the potential bioactivity of volatile metabolites in different vegetables and fruits from regular consumption, the volatile composition was established using a green extraction technique, solid phase microextraction in headspace mode (HS-SPME), combined with gas chromatography tandem mass spectrometry (GC-MS). A total of 320 volatile metabolites, comprising 51 terpenic compounds, 45 organosulfur compounds, 31 aldehydes, 37 esters, 29 ketones, 28 alcohols, 23 furanic compounds, 22 hydrocarbons, 19 benzene compounds, 13 nitrogenous compounds, 9 carboxylic acids, 7 ethers, 4 halogenated compounds and 3 naphthalene derivatives, were positively identified. Each investigated fruit and vegetable showed a specific volatile metabolomic profile. The obtained results revealed that terpenic compounds, to which are associated antimicrobial, antioxidant, and anticancer activities, are the most predominant chemical family in beetroot (61%), orange carrot (58%) and white carrot (61%), while organosulfur compounds (antiviral activity) are dominant in onion, garlic and watercress. Broccoli and spinach are essentially constituted by alcohols and aldehydes (enzyme-inhibition and antimicrobial properties), while fruits from the Solanaceae family are characterized by esters in tamarillo and aldehydes in tomato.
  • Chemical fingerprint of free polyphenols and antioxidant activity in dietary fruits and vegetables using a non-targeted approach based on QuEChERS ultrasound-assisted extraction combined with UHPLC-PDA
    Publication . Aguiar, Joselin; Gonçalves, João L.; Alves, Vera L.; Câmara, José S.
    Fruits and vegetables are considered a good source of antioxidants, which are beneficial in protecting the human body against damage induced by free radicals and other reactive oxygen (ROS) and nitrogen (RNS) species. In this work, we aimed to evaluate the integral antioxidant activity (AOA) and determine individual polyphenols in fruits and vegetables of frequent consumption. For this purpose, an innovative and high throughput analytical approach based on original QuEChERS assisted by ultrasound extraction (USAE), instead of the manual agitation used in the classical procedure, was optimized and implemented for the isolation of polyphenols. The total phenolic content (TPC), flavonoids, anthocyanins, and betalains were evaluated using different spectrophotometric assays. In addition, free radical scavenging by methods 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 2,20 -diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) were used to estimate the AOA of the investigated fruit and vegetable extracts. Red onion, tamarillo, and beetroot were the samples with the highest AOA. The quantification and identification of free low molecular weight polyphenols from QuEChERS-USAE extracts was carried out by ultra-high-pressure liquid chromatography equipped with a photodiode array detection system (UHPLC-PDA). Catechin was the most abundant polyphenol, followed by gentisic and ferulic acids, mainly in the watercress sample. In relation to flavonols, quercetin and kaempferol were found mostly in onion samples, and in small quantities in tomato and watercress. The improved analytical approach, QuEChERS-USAE/UHPLC-PDA, offers an attractive alternative for the analysis of polyphenols from fruit and vegetable samples, providing several advantages over traditional extraction techniques, in terms of reproducibility, simplicity, low cost, analysis speed, and analytical performance.