Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Impact of indigenous non-saccharomyces yeasts isolated from Madeira Island vineyards on the formation of ethyl carbamate in the aging of fortified wines
    Publication . Leça, João Micael; Pereira, Vanda; Miranda, Andreia; Vilchez, José Luis; Malfeito-Ferreira, Manuel; Marques, José Carlos
    The impact of selected non-Saccharomyces yeasts on the occurrence of ethyl carbamate (EC) was evaluated. Hanseniaspora uvarum, Starmerella bacillaris, Pichia terricola, Pichia fermentans and Pichia kluyveri isolated from Madeira Island vineyards were inoculated in Tinta Negra musts. Urea, citrulline (Cit) and arginine (Arg) were quantified when the density of musts attained the levels to obtain sweet (1052 ± 5 g/L) and dry (1022 ± 4 g/L) Madeira wines. The urea concentration varied between 1.3 and 5.3 mg/L, Cit from 10.6 to 15.1 mg/L and Arg between 687 and 959 mg/L. P. terricola and S. bacillaris generated lower levels of urea (<2.5 mg/L), Cit (<11.0 mg/L) and Arg (<845.6 mg/L). The five resulting fortified wines, individually fermented by the selected non-Saccharomyces yeast, were exposed to laboratory-accelerated aging at 70 °C for 1 month. From the studied yeasts, P. terricola and S. bacillaris revealed a lower potential to form EC (<100 µg/L); therefore, both yeasts can be a useful tool for its mitigation in wines.
  • Impact of Non-Saccharomyces Yeast Fermentation in Madeira Wine Chemical Composition
    Publication . Miranda, Andreia; Pereira, Vanda; Jardim, Humberto; Malfeito-Ferreira, Manuel; Marques, José Carlos
    Madeira wine is produced via spontaneous alcoholic fermentation arrested by ethanol addition. The increasing demand of the wine market has led to the need to standardize the winemak ing process. This study focuses on identifying the microbiota of indigenous yeasts present during Madeira wine fermentation and then evaluates the impact of selected indigenous non-Saccharomyces as pure starter culture (Hanseniaspora uvarum, Starmerella bacillaris, Pichia terricola, Pichia fermentans, and Pichia kluyveri) in the chemical and phenolic characterization of Madeira wine production. Re sults showed that the polyphenol content of the wines was influenced by yeast species, with higher levels found in wines produced by Pichia spp. (ranging from 356.85 to 367.68 mg GAE/L in total polyphenols and 50.52 to 51.50 mg/L in total individual polyphenols through HPLC methods). Antioxidant potential was higher in wines produced with Hanseniaspora uvarum (133.60 mg Trolox/L) and Starmerella bacillaris (137.61 mg Trolox/L). Additionally, Starmerella bacillaris stands out due to its sugar consumption during fermentation (the totality of fructose and 43% of glucose) and 15.80 g/L of total organic acids compared to 9.23 g/L (on average) for the other yeasts. This knowledge can be advantageous to standardizing the winemaking process and increasing the bioactive compounds, resulting in the production of high-quality wines.