Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- NeuRow: an immersive VR environment for motor-imagery training with the use of brain-computer interfaces and vibrotactile feedbackPublication . Bermúdez i Badia, Sergi; Ferreira, André; Vourvopoulos, AthanasiosMotor-Imagery offers a solid foundation for the development of Brain-Computer Interfaces (BCIs), capable of direct brain-to-computer communication but also effective in alleviating neurological impairments. The fusion of BCIs with Virtual Reality (VR) allowed the enhancement of the field of virtual rehabilitation by including patients with low-level of motor control with limited access to treatment. BCI-VR technology has pushed research towards finding new solutions for better and reliable BCI control. Based on our previous work, we have developed NeuRow, a novel multiplatform prototype that makes use of multimodal feedback in an immersive VR environment delivered through a state-of-the-art Head Mounted Display (HMD). In this article we present the system design and development, including important features for creating a closed neurofeedback loop in an implicit manner, and preliminary data on user performance and user acceptance of the system.
- RehabNet: a distributed architecture for motor and cognitive neuro-rehabilitationPublication . Vourvopoulos, Athanasios; Faria, Ana Lúcia; Cameirão, Mónica S.; Bermúdez i Badia, SergiEvery year millions of people worldwide suffer from stroke, resulting in motor and/or cognitive disability. As a result, patients experience an increased loss of independence, autonomy and low self-esteem. Evolving to a chronic condition, stroke requires of continuous rehabilitation and therapy. Current ICT approaches, with the use of robotics and Virtual Reality, show some benefits over conventional therapy. However, most of the novel approaches are suitable only for a reduced subset of patients. RehabNet proposes an inclusive approach towards an open and distributed architecture for ‘in-home’ neurorehabilitation and monitoring by means of non-invasive ICT. In this paper we present the RehabNet architecture, its design and the implementation of a combined motor-and-cognitive system for post-stroke rehabilitation.
- RehabCity: design and validation of a cognitive assessment and rehabilitation tool through gamified simulations of activities of daily livingPublication . Vourvopoulos, Athanasios; Faria, Ana Lúcia; Ponnam, Kushal; Bermúdez i Badia, SergiWorldwide, more than one in three adults suffers from a cardiovascular disease. According to the World Health Organization, 15 million people experience a stroke each year and, of these, 5 million stay permanently disabled. The current limitations of traditional rehabilitation methods push towards the design of personalized tools that can be used intensively by patients and therapists in clinical or athome environments. In this paper we present the design, implementation and validation of RehabCity, an online game designed for the rehabilitation of cognitive deficits through a gamified approach on activities of daily living (ADLs). Among other findings, our results show a strong correlation between the RehabCity scoring system and the Mini Mental State Examination test for clinical assessment of cognitive function in several domains. These findings suggest that RehabCity is a valid tool for the quantitative assessment of patients with cognitive deficits derived from a brain lesion.