Loading...
Research Project
Research Centre for Mathematics and Applications
Funder
Authors
Publications
Performance evaluation of directional antennas in ZigBee networks under NLOS propagation conditions
Publication . Azevedo, Joaquim Amândio; Santos, Filipe
Many authors suggest directional antennas to enhance the transmission performance of
ZigBee networks. For line-of-sight propagation, directional antennas can extend the transmission
range or reduce the transmit power. Directional antennas may also reduce interference between
networks operating in the same frequency channel. However, these antennas may not perform
similarly under non-line-of-sight propagation conditions. This work presents a study with ZigBee
modules comparing the performance of a directional antenna with an omnidirectional one. The
measurements were conducted on a university campus for different propagation outdoor environ ments. A deconvolution technique was applied to estimate the received signal as a function of
the azimuth angle. The results demonstrated that the received power followed the gain difference
between antennas only for paths with low attenuation. Considering the same Effective Isotropic
Radiated Power (EIRP), the system with directional antennas started to lose packets at the same
distance as the omnidirectional antennas. The directional antenna did not allow the increase in the
link range compared to the omnidirectional antenna. The power consumption was also measured for
different transmit power levels of the ZigBee radio. The study showed that the control circuits of
directional antennas typically consume more power than omnidirectional antennas operating at a
higher transmit power level.
Measurement of water level in urban streams under bad weather conditions
Publication . Azevedo, Joaquim Amândio; Brás, João André
Flood control and water resources management require monitoring the water level in
rivers and streams. Water level measurement techniques increasingly consider image processing
procedures. Most of the systems use a staff gauge to support the waterline detection. However,
these techniques can fail when applied to urban stream channels due to water undulation, debris on
the water surface, and traces of rain captured by the camera, and other adverse effects on images
can be quite dramatic on the results. The importance of considering these effects is that they are
usually associated with the variation in the water level with the occurrence of rain. The technique
proposed in this work uses a larger detection zone to minimize the effects that tend to obstruct
the waterline. The developed system uses an infrared camera to operate during the day and night.
Images acquired in different weather conditions helped to evaluate the proposed technique. The
water level measurement accuracy was about 1.8 cm for images taken during the day and 2.8 cm
for images taken at night. During short periods of heavy rain, the accuracy was 2.6 cm for the
daytime and 3.4 cm for the nighttime. Infrared lighting can improve detection accuracy at night.
The developed technique provides good accuracy under different weather conditions by combining
information from various detection positions to deal with waterline detection issues.
A more efficient technique to power home monitoring systems using controlled battery charging
Publication . Azevedo, Joaquim Amândio; Santos, Filipe Edgar
Home energy monitoring has recently become a very important issue and a means to
reduce energy consumption in the residential sector. Sensors and control systems are deployed at
various locations in a house and an intelligent system is used to efficiently manage the consumed
energy. Low power communication systems are used to provide low power consumption from a
smart meter. Several of these systems are battery operated. Other systems use AC/DC adapters to
supply power to sensors and communication systems. However, even using low-power technology,
such as ZigBee, the power consumption of a router can be high because it must always be powered
on. In this work, to evaluate power consumption, a system for monitoring energy usage and indoor
air quality was developed. A technique is proposed to efficiently supply power to the components of
the system. All sensor nodes are battery operated, and relays are used to control the battery charging
process. In addition, an energy harvesting system based on solar energy was developed to power the
proposed system.
Noncontact Automatic Water-Level Assessment and Prediction in an Urban Water Stream Channel of a Volcanic Island Using Deep Learning
Publication . Mendonça, Fabio; Mostafa, Sheikh Shanawaz; Dias, Fernando Morgado; Azevedo, Joaquim Amândio; Ravelo-García, Antonio G.; Navarro-Mesa, Juan L.
Traditional methods for water-level measurement usually employ permanent structures,
such as a scale built into the water system, which is costly and laborious and can wash away with
water. This research proposes a low-cost, automatic water-level estimator that can appraise the level
without disturbing water flow or affecting the environment. The estimator was developed for urban
areas of a volcanic island water channel, using machine learning to evaluate images captured by a
low-cost remote monitoring system. For this purpose, images from over one year were collected. For
better performance, captured images were processed by converting them to a proposed color space,
named HLE, composed of hue, lightness, and edge. Multiple residual neural network architectures
were examined. The best-performing model was ResNeXt, which achieved a mean absolute error of
1.14 cm using squeeze and excitation and data augmentation. An explainability analysis was carried
out for transparency and a visual explanation. In addition, models were developed to predict water
levels. Three models successfully forecasted the subsequent water levels for 10, 60, and 120 min, with
mean absolute errors of 1.76 cm, 2.09 cm, and 2.34 cm, respectively. The models could follow slow
and fast transitions, leading to a potential flooding risk-assessment mechanism.
Levi and Harper identities for non-prioritized belief base change
Publication . Garapa, Marco; Fermé, Eduardo; Reis, Maurício D. L.
In this paper, we investigate the relation between shielded base contraction postulates
and credibility-limited (CL) base revision postulates. More precisely, we identify (i) the
relation between the postulates satisfied by a shielded base contraction operator and the
postulates satisfied by the CL base revision operator that is defined from it by means of the
consistency-preserving Levi identity and (ii) the relation between the postulates satisfied
by a CL base revision operator and the postulates satisfied by the shielded base contraction
operator that is defined from it by means of the Harper identity. Furthermore, we show
that the consistency-preserving Levi identity and the Harper identity establish a one-to one correspondence between the twenty classes of shielded base contractions presented in
[21] and the twenty classes of credibility-limited base revisions presented in [22].
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UIDB/04674/2020