Loading...
Research Project
Untitled
Funder
Authors
Publications
Thermo/redox/pH-triple sensitive poly(N-isopropylacrylamide-co-acrylic acid) nanogels for anticancer drug delivery
Publication . Zhan, Yuan; Gonçalves, Mara; Yi, Panpan; Capelo, Débora; Zhang, Yuhong; Rodrigues, João; Liu, Changsheng; Tomás, Helena; Li, Yulin; He, Peixin
The clinical application of doxorubicin (DOX), like other anticancer drugs, is limited by insufficient cellular uptake and the numerous drug resistance mechanisms existing in cells. The development of smart nanomaterials capable of carrying the drugs into the cells and of releasing them under the control of the microenvironment is an interesting approach that may increase the success of the anticancer drugs currently in use. Herein, we report an easy process to prepare biocompatible nanogels (NGs) with thermo/ redox/pH-triple sensitivity, which are highly effective in the intracellular delivery of DOX. Redox-sensitive/ degradable NGs (PNA-BAC) and nondegradable NGs (PNA-MBA) were prepared through in situ polymerization of N-isopropylacrylamide (NIPAM) and acrylic acid (AA) in the presence of sodium dodecyl sulfate (SDS) as a surfactant, using N,N0-bis(acryloyl)cystamine (BAC) as a biodegradable crosslinker or N,N0-methylene bisacrylamide (MBA) as a nondegradable crosslinker, respectively. After that, the cationic DOX drug was loaded into the NGs through electrostatic interactions, by simply mixing them in aqueous solution. Compared to nondegradable PNA-MBA NGs, PNA-BAC NGs not only presented a higher DOX drug loading capacity, but also allowed a more sustainable drug release behavior under physiological conditions. More importantly, PNA-BAC NGs displayed thermo-induced drug release properties and an in vitro accelerated release of DOX under conditions that mimic intracellular reductive conditions and acidic tumor microenvironments. The thermo/redox/pH multi-sensitive NGs can quickly be taken up by CAL-72 cells (an osteosarcoma cell line), resulting in a high DOX intracellular accumulation and an improved cytotoxicity when compared with free DOX and DOX-loaded nondegradable PNA-MBA NGs. The developed NGs can be possibly used as an effective platform for the delivery of cationic therapeutic agents for biomedical applications.
Fine tuning of the pH-sensitivity of laponite–doxorubicin nanohybrids by polyelectrolyte multilayer coating
Publication . Xiao, Shili; Castro, Rita; Maciel, Dina; Gonçalves, Mara; Shi, Xiangyang; Rodrigues, João; Tomás, Helena
Despite the wide research done in the field, the development of advanced drug delivery systems with improved drug delivery properties and effective anticancer capability still remains a great challenge. Based on previous work that showed the potentialities of the nanoclay Laponite as a pH-sensitive doxorubicin (Dox) delivery vehicle, herein we report a simple method to modulate its extent of drug release at different pH values. This was achieved by alternate deposition of cationic poly(allylamine) hydrochloride and anionic poly(sodium styrene sulfonate) (PAH/PSS) polyelectrolytes over the surface of Dox-loaded Laponite nanoparticles using the electrostatic layer-by-layer (LbL) self-assembly approach. The successful formation of polyelectrolyte multilayer-coated Dox/Laponite systems was confirmed by Dynamic Light Scattering and zeta potential measurements. Systematic studies were performed to evaluate their drug release profiles and anticancer efficiency. Our results showed that the presence of the polyelectrolyte multilayers improved the sustained release properties of Laponite and allowed a fine tuning of the extension of drug release at neutral and acidic pH values. The cytotoxicity presented by polyelectrolyte multilayer-coated Dox/Laponite systems towards MCF-7 cells was in accordance with the drug delivery profiles. Furthermore, cellular uptake studies revealed that polyelectrolyte multilayer-coated Dox/Laponite nanoparticles can be effectively internalized by cells conducting to Dox accumulation in cell nucleus.
Antitumor efficacy of doxorubicin-loaded laponite/alginate hybrid hydrogels
Publication . Gonçalves, Mara; Figueira, Priscilla; Maciel, Dina; Rodrigues, João; Shi, Xiangyang; Tomás, Helena; Li, Yulin
Degradable hybrid hydrogels with improved stability are prepared by incorporating nanodisks of biocompatible laponite (LP) in alginate (AG) hydrogels using Ca2+ as a crosslinker. The Dox‐loaded hybrid hydrogels give a controlled Dox release at physiological environment in a sustained manner. Under conditions that mimic the tumor environment, both the sustainability in the Dox release (up to 17 d) and the release efficiency from LP/AG‐Dox hydrogels are improved. The in situ degradation of these hybrid hydrogels gives rise to nanohybrids that might serve as vehicles for carrying Dox through the cell membrane and diminish the effect of Dox ion‐trapping in the acidic extracellular environment of the tumor and/or in the endo‐lysosomal cell compartments.
Dendrimer-assisted formation of fluorescent nanogels for drug delivery and intracellular imaging
Publication . Gonçalves, Mara; Maciel, Dina; Capelo, Débora; Xiao, Shili; Sun, Wenjie; Shi, Xiangyang; Rodrigues, João; Tomás, Helena; Li, Yulin
Although, in general, nanogels present a good biocompatibility and are able to mimic biological tissues, their unstability and uncontrollable release properties still limit their biomedical applications. In this study, a simple approach was used to develop dual-cross-linked dendrimer/alginate nanogels (AG/G5), using CaCl2 as cross-linker and amine-terminated generation 5 dendrimer (G5) as a cocrosslinker, through an emulsion method. Via their strong electrostatic interactions with anionic AG, together with cross-linker Ca(2+), G5 dendrimers can be used to mediate the formation of more compact structural nanogels with smaller size (433 ± 17 nm) than that (873 ± 116 nm) of the Ca(2+)-cross-linked AG nanogels in the absence of G5. Under physiological (pH 7.4) and acidic (pH 5.5) conditions, the sizes of Ca(2+)-cross-linked AG nanogels gradually decrease probably because of their degradation, while dual-cross-linked AG/G5 nanogels maintain a relatively more stable structure. Furthermore, the AG/G5 nanogels effectively encapsulate the anticancer drug doxorubicin (Dox) with a loading capacity 3 times higher than that of AG nanogels. The AG/G5 nanogels were able to release Dox in a sustained way, avoiding the burst release observed for AG nanogels. In vitro studies show that the AG/G5-Dox NGs were effectively taken up by CAL-72 cells (a human osteosarcoma cell line) and maintain the anticancer cytotoxicity levels of free Dox. Interestingly, G5 labeled with a fluorescent marker can be integrated into the nanogels and be used to track the nanogels inside cells by fluorescence microscopy. These findings demonstrate that AG/G5 nanogels may serve as a general platform for therapeutic delivery and/or cell imaging.
Nanotechnology approaches for the delivery of antitumor drugs: the case of doxorubicin
Publication . Gonçalves, Mara Isabel Jesus; Tomás, Helena Maria Pires Gaspar; Rodrigues, João Manuel Cunha; Lin, Yulin
Over the years, nanotechnology had a huge evolution and gathered the attention of many
scientists, including those involved in medical sciences. Nanomedicine thus appeared, trying to
overcome obstacles that still exist in conventional medicine, by providing innovative approaches for
the diagnosis and treatment of diseases.
Nowadays, cancer is considered one of the major causes of worldwide death. Doxorubicin
(DOX) is a chemotherapeutic drug which is routinely used for cancer treatment. Due to its broad
spectrum of activity, DOX is used as a first-line treatment combined with other drugs and procedures.
However, this drug has several associated side effects, being the injury of the cardiac muscle tissue
and myelosuppression the most reported. Cancer nanomedicine stands up as an alternative to
conventional cancer therapy by using nanomaterials as drug carriers which, potentially, make the
treatment more efficient and safe. Polymer-based nanomaterials are very promising vehicles for drug
delivery, due to the easiness in modelling their properties. Over the years, polymers have proven to
be capable of encapsulating and releasing drugs in a sustained manner, improving their biodistribution
and accumulation in tumours.
The main goal of this thesis was to find new drug delivery systems that could be able to
encapsulate DOX and successfully deliver it inside cancer cells. Hopefully, using nanomaterials for DOX
delivery, it will be possible to overcome the side effects which are frequently associated to this
antitumor drug.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
SFRH
Funding Award Number
SFRH/BD/88721/2012