Repository logo
 
Loading...
Project Logo
Research Project

HNC-i3OMICS - Development of an innovative and integrated platform based on OMICS patterns towards the next generation of cancer diagnosis and management

Authors

Publications

Exploring the potential of NTME/GC-MS, in the establishment of urinary volatomic profiles. Lung cancer patients as case study
Publication . Porto-Figueira, Priscilla; Pereira, Jorge; Miekisch, Wolfram; Câmara, José S.
The growing cancer incidence and mortality worldwide claims for the development of novel diagnostic strategies. In this study we aimed to explore the potential of an innovative methodology, based on a needle trap microextraction (NTME), combined with gas chromatography-mass spectrometry (GC-MS), as new approach to isolate and profile urinary volatile organic metabolites (VOMs) from lung cancer (LC) patients and healthy individuals (CTRL). In this context, different experimental parameters with influence of NTME extraction efficiency including, temperature, equilibration time, headspace volume, ionic strength, pH, effects of sample volume and stirring, were investigated and optimized. For the DVB/CarX/Car1000 needle trap device (NTD), the best results were obtained using 40 mL headspace of a 4-mL acidified (pH = 2) urine sample with 20% NaCl and an extraction temperature of 50 °C for 40 min of equilibration time. The stability of the isolated VOMs was investigated up to 72 h after extraction. From the VOMs identified, belonging namely to ketones, sulphur and benzene derivatives, 98 presented a frequency of occurrence above 90%. Data were processed by discriminant analysis, retrieving differentiated clusters for LC and CTRL groups. As far we are aware, this is the first study using NTME/GC-MS to establish urinary volatomic profiles. Preliminary results are very promising, as broad and comprehensive volatile profiles were obtained. Moreover, the extended storage stability of the NTD devices opens new opportunities for sampling other matrices in a wide range of applications.
Exploring the potential of needle trap microextraction combined with chromatographic and statistical data to discriminate different types of cancer based on urinary volatomic biosignature
Publication . Porto-Figueira, Priscilla; Pereira, Jorge A. M.; Câmara, José S.
The worldwide high cancer incidence and mortality demands for more effective and specific diagnostic strategies. In this study, we evaluated the efficiency of an innovative methodology, Needle Trap Microextraction (NTME), combined with gas chromatography-mass spectrometry (GC-MS), for the establishment of the urinary volatomic biosignature from breast (BC), and colon (CC) cancer patients as well as healthy individuals (CTL). To achieve this, 40 mL of the headspace of acidified urine (4 mL, 20% NaCl, pH = 2), equilibrated at 50 °C during 40 min, were loaded through the DVB/Car1000/CarX sorbent inside the NTD, and subjected to a GC-MS analysis. This allowed the identification of 130 VOMs from different chemical families that were further processed using discriminant analysis through the partial least squares method (PLS-DA). Several pathways are over activated in cancer patients, being phenylalanine pathway in BC and limonene and pinene degradation pathway in CC the most relevant. Butanoate metabolism is also highly activated in both cancers, as well as tyrosine metabolism in a lesser extension. In BC the xenobiotics metabolism by cytochrome P450 and fatty acid biosynthesis are also differentially activated. Different clusters corresponding to the groups recruited allowed to define sets of volatile organic metabolites (VOMs fingerprints) that exhibit high classification rates, sensitivity and specificity in the discrimination of the selected cancers. As far as we are aware, this is the first time that NTME is used for isolation urinary volatile metabolites, being the obtained results very promising.
QuEChERS - Fundamentals, relevant improvements, applications and future trends
Publication . Perestrelo, Rosa; Silva, Pedro; Porto-Figueira, Priscilla; Pereira, Jorge A. M.; Silva, Catarina; Medina, Sonia; Câmara, José S.
The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method is a simple and straightforward extraction technique involving an initial partitioning followed by an extract clean-up using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS approach was developed for recovering pesticide residues from fruits and vegetables, but rapidly gained popularity in the comprehensive isolation of analytes from different matrices. According to PubMed, since its development in 2003 up to November 2018, about 1360 papers have been published reporting QuEChERS as extraction method. Several papers have reported different improvements and modifications to the original QuEChERS protocol to ensure more efficient extractions of pH-dependent analytes and to minimize the degradation of labile analytes. This analytical approach shows several advantages over traditional extraction techniques, requiring low sample and solvent volumes, as well as less time for sample preparation. Furthermore, most of the published studies show that the QuEChERS protocol provides higher recovery rate and a better analytical performance than conventional extraction procedures. This review proposes an updated overview of the most recent developments and applications of QuEChERS beyond its original application to pesticides, mycotoxins, veterinary drugs and pharmaceuticals, forensic analysis, drugs of abuse and environmental contaminants. Their pros and cons will be discussed, considering the factors influencing the extraction efficiency. Whenever possible, the performance of the QuEChERS is compared to other extraction approaches. In addition to the evolution of this technique, changes and improvements to the original method are discussed.
Evaluation of the Health-Promoting Properties of Selected Fruits
Publication . Figueira, José A.; Porto-Figueira, Priscilla; Berenguer, Cristina; Pereira, Jorge A. M.; Câmara, José S.
In this study, the health-promoting benefits of different fruits grown in Madeira Island, namely lemon (Citrus limon var. eureka), tangerine (Citrus reticulata var. setubalense), pitanga (Eugenia uniflora var. red), tomato (Solanum lycopersicum var. gordal) and uva-da-serra, an endemic blueberry (Vaccinium padifolium Sm.), were investigated. The phenolic composition (total phenolics and total flavonoids content) and antioxidant capacity (assessed through ABTS and DPPH assays) were measured revealing a high phenolic potential for all fruits, except tomato, while uva-da-serra is particularly rich in flavonoids. In relation to the antioxidant capacity, the highest values were obtained for pitanga and uva-da-serra extracts. The bioactive potential was also assessed through the ability of the extracts to inhibit digestive enzymes linked to diabetes (α-amylase, α- and β glucosidases) and hypertension (angiotensin-converting enzyme, ACE). The results obtained point to a very high bioactive potential with the selected samples exhibiting very important ACE anti enzymatic capacities. A statistical analysis of the obtained data reveals a very strong correlation between ABTS and TPC, and a strong contribution of the fruit polyphenols for enzyme inhibition, and thus, presenting high antihypertensive and antidiabetic capacities. Overall, the results obtained clearly show a high bioactive potential of the selected fruits that should be further studied, in terms of specific phenolic composition. Moreover, these results strongly support the valorisation of pitanga seeds usually discarded as a waste, and uva-da-serra, an endemic and wild bush, as potential bioresources of bioactive compounds with impact in human diet.
The potential of microextraction techniques for the analysis of bioactive compounds in food
Publication . Pereira, Jorge A. M.; Casado, Natalia; Porto-Figueira, Priscilla; Câmara, José S.
For a long time, the importance of sample preparation and extraction in the analytical performance of the most diverse methodologies have been neglected. Cumbersome techniques, involving high sample and solvent volumes have been gradually miniaturized from solid-phase and liquid-liquid extractions formats and microextractions approaches are becoming the standard in different fields of research. In this context, this review is devoted to the analysis of bioactive compounds in foods using different microextraction approaches reported in the literature since 2015. But microextraction also represents an opportunity to mitigate the environmental impact of organic solvents usage, as well as lab equipment. For this reason, in the recent literature, phenolics and alkaloids extraction from fruits, medicinal herbs, juices, and coffee using different miniaturized formats of solid-phase extraction and liquid-liquid microextraction are the most popular applications. However, more ambitious analytical limits are continuously being reported and emergent sorbents based on carbon nanotubes and magnetic nanoparticles will certainly contribute to this trend. Additionally, ionic liquids and deep eutectic solvents constitute already the most recent forefront of innovation, substituting organic solvents and further improving the current microextraction approaches.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

OE

Funding Award Number

SFRH/BD/129630/2017

ID