Publication
Automatic cognitive fatigue detection using wearable fNIRS and machine learning
dc.contributor.author | Varandas, Rui | |
dc.contributor.author | Lima, Rodrigo | |
dc.contributor.author | Bermúdez i Badia, Sergi | |
dc.contributor.author | Silva, Hugo | |
dc.contributor.author | Gamboa, Hugo | |
dc.date.accessioned | 2022-07-22T10:15:46Z | |
dc.date.available | 2022-07-22T10:15:46Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Wearable sensors have increasingly been applied in healthcare to generate data and monitor patients unobtrusively. Their application for Brain–Computer Interfaces (BCI) allows for unobtru sively monitoring one’s cognitive state over time. A particular state relevant in multiple domains is cognitive fatigue, which may impact performance and attention, among other capabilities. The monitoring of this state will be applied in real learning settings to detect and advise on effective break periods. In this study, two functional near-infrared spectroscopy (fNIRS) wearable devices were employed to build a BCI to automatically detect the state of cognitive fatigue using machine learning algorithms. An experimental procedure was developed to effectively induce cognitive fatigue that included a close-to-real digital lesson and two standard cognitive tasks: Corsi-Block task and a concentration task. Machine learning models were user-tuned to account for the individual dynamics of each participant, reaching classification accuracy scores of around 70.91 ± 13.67%. We concluded that, although effective for some subjects, the methodology needs to be individually validated before being applied. Moreover, time on task was not a particularly determining factor for classification, i.e., to induce cognitive fatigue. Further research will include other physiological signals and human–computer interaction variables. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Varandas, R., Lima, R., Badia, S. B. I., Silva, H., & Gamboa, H. (2022). Automatic cognitive fatigue detection using wearable fNIRS and machine learning. Sensors, 22(11), 4010. | pt_PT |
dc.identifier.doi | 10.3390/s22114010 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.13/4450 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | MDPI | pt_PT |
dc.relation | Biosignals Training Methods based on Biosignals Monitoring | |
dc.relation | Emotional Regulation Assessment via multi-biosignal processing in a VR environment for neurorehabilitation. | |
dc.relation | NOVA Laboratory for Computer Science and Informatics | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Cognitive fatigue | pt_PT |
dc.subject | Functional near-infrared spectroscopy | pt_PT |
dc.subject | Machine learning | pt_PT |
dc.subject | Brain-computer interface | pt_PT |
dc.subject | . | pt_PT |
dc.subject | Faculdade de Ciências Exatas e da Engenharia | pt_PT |
dc.title | Automatic cognitive fatigue detection using wearable fNIRS and machine learning | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Biosignals Training Methods based on Biosignals Monitoring | |
oaire.awardTitle | Emotional Regulation Assessment via multi-biosignal processing in a VR environment for neurorehabilitation. | |
oaire.awardTitle | NOVA Laboratory for Computer Science and Informatics | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/OE/PD%2FBDE%2F150304%2F2019/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT//2020.06024.BD/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FCEC%2F04516%2F2019/PT | |
oaire.citation.issue | 11 | pt_PT |
oaire.citation.startPage | 4010 | pt_PT |
oaire.citation.title | Sensors | pt_PT |
oaire.citation.volume | 22 | pt_PT |
oaire.fundingStream | OE | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Varandas | |
person.familyName | Lima | |
person.familyName | Bermúdez i Badia | |
person.familyName | Plácido da Silva | |
person.familyName | Gamboa | |
person.givenName | Rui | |
person.givenName | Rodrigo | |
person.givenName | Sergi | |
person.givenName | Hugo | |
person.givenName | Hugo | |
person.identifier | 1891321 | |
person.identifier | 2239636 | |
person.identifier | 239789 | |
person.identifier.ciencia-id | 431C-7851-485E | |
person.identifier.ciencia-id | CA17-5E88-2B37 | |
person.identifier.ciencia-id | B415-0557-402B | |
person.identifier.ciencia-id | 841F-7D22-F80E | |
person.identifier.orcid | 0000-0002-0237-3412 | |
person.identifier.orcid | 0000-0002-4030-9526 | |
person.identifier.orcid | 0000-0003-4452-0414 | |
person.identifier.orcid | 0000-0001-6764-8432 | |
person.identifier.orcid | 0000-0002-4022-7424 | |
person.identifier.rid | C-8681-2018 | |
person.identifier.rid | M-8799-2013 | |
person.identifier.scopus-author-id | 6506360007 | |
person.identifier.scopus-author-id | 57200265948 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 9870f6ac-0519-47ea-a046-b5158e3500b9 | |
relation.isAuthorOfPublication | 8c8adbee-10d8-4b53-8b0e-f33b285c1c24 | |
relation.isAuthorOfPublication | ef8f1e3b-3c09-4817-80d0-d96aa88051a2 | |
relation.isAuthorOfPublication | 13bb4928-d658-43e3-a96e-2540daffad86 | |
relation.isAuthorOfPublication | 0bbc2b40-5a73-4c89-b49b-d7412960cb81 | |
relation.isAuthorOfPublication.latestForDiscovery | 13bb4928-d658-43e3-a96e-2540daffad86 | |
relation.isProjectOfPublication | 1ad3648b-ce0f-4408-b641-f79c2fb5540c | |
relation.isProjectOfPublication | 52761465-959a-446d-93bb-da695772a7e9 | |
relation.isProjectOfPublication | 6ba2835f-91ea-405b-8134-949b529ceb42 | |
relation.isProjectOfPublication.latestForDiscovery | 52761465-959a-446d-93bb-da695772a7e9 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Automatic Cognitive Fatigue Detection Using Wearable fNIRS and Machine Learning.pdf
- Size:
- 526.27 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: