Repository logo
 
Publication

Nature-inspired algorithms for solving some hard numerical problems

datacite.subject.fosCiências Naturais::Matemáticaspt_PT
dc.contributor.advisorLopes, Luiz Carlos Guerreiro
dc.contributor.advisorDias, Fernando Manuel Rosmaninho Morgado Ferrão
dc.contributor.authorFreitas, Diogo Nuno Teixeira
dc.date.accessioned2020-11-27T11:23:09Z
dc.date.available2021-10-02T00:30:15Z
dc.date.issued2020-10-02
dc.description.abstractOptimisation is a branch of mathematics that was developed to find the optimal solutions, among all the possible ones, for a given problem. Applications of optimisation techniques are currently employed in engineering, computing, and industrial problems. Therefore, optimisation is a very active research area, leading to the publication of a large number of methods to solve specific problems to its optimality. This dissertation focuses on the adaptation of two nature inspired algorithms that, based on optimisation techniques, are able to compute approximations for zeros of polynomials and roots of non-linear equations and systems of non-linear equations. Although many iterative methods for finding all the roots of a given function already exist, they usually require: (a) repeated deflations, that can lead to very inaccurate results due to the problem of accumulating rounding errors, (b) good initial approximations to the roots for the algorithm converge, or (c) the computation of first or second order derivatives, which besides being computationally intensive, it is not always possible. The drawbacks previously mentioned served as motivation for the use of Particle Swarm Optimisation (PSO) and Artificial Neural Networks (ANNs) for root-finding, since they are known, respectively, for their ability to explore high-dimensional spaces (not requiring good initial approximations) and for their capability to model complex problems. Besides that, both methods do not need repeated deflations, nor derivative information. The algorithms were described throughout this document and tested using a test suite of hard numerical problems in science and engineering. Results, in turn, were compared with several results available on the literature and with the well-known Durand–Kerner method, depicting that both algorithms are effective to solve the numerical problems considered.pt_PT
dc.description.abstractA Optimização é um ramo da matemática desenvolvido para encontrar as soluções óptimas, de entre todas as possíveis, para um determinado problema. Actualmente, são várias as técnicas de optimização aplicadas a problemas de engenharia, de informática e da indústria. Dada a grande panóplia de aplicações, existem inúmeros trabalhos publicados que propõem métodos para resolver, de forma óptima, problemas específicos. Esta dissertação foca-se na adaptação de dois algoritmos inspirados na natureza que, tendo como base técnicas de optimização, são capazes de calcular aproximações para zeros de polinómios e raízes de equações não lineares e sistemas de equações não lineares. Embora já existam muitos métodos iterativos para encontrar todas as raízes ou zeros de uma função, eles usualmente exigem: (a) deflações repetidas, que podem levar a resultados muito inexactos, devido ao problema da acumulação de erros de arredondamento a cada iteração; (b) boas aproximações iniciais para as raízes para o algoritmo convergir, ou (c) o cálculo de derivadas de primeira ou de segunda ordem que, além de ser computacionalmente intensivo, para muitas funções é impossível de se calcular. Estas desvantagens motivaram o uso da Optimização por Enxame de Partículas (PSO) e de Redes Neurais Artificiais (RNAs) para o cálculo de raízes. Estas técnicas são conhecidas, respectivamente, pela sua capacidade de explorar espaços de dimensão superior (não exigindo boas aproximações iniciais) e pela sua capacidade de modelar problemas complexos. Além disto, tais técnicas não necessitam de deflações repetidas, nem do cálculo de derivadas. Ao longo deste documento, os algoritmos são descritos e testados, usando um conjunto de problemas numéricos com aplicações nas ciências e na engenharia. Os resultados foram comparados com outros disponíveis na literatura e com o método de Durand–Kerner, e sugerem que ambos os algoritmos são capazes de resolver os problemas numéricos considerados.pt_PT
dc.identifier.tid202538583pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.13/3010
dc.language.isoengpt_PT
dc.relationLaboratory of Robotics and Engineering Systems
dc.subjectOtimizaçãopt_PT
dc.subjectOtimização por enxame de partículaspt_PT
dc.subjectRedes neurais artificiaispt_PT
dc.subjectRaízespt_PT
dc.subjectPolinómiospt_PT
dc.subjectEquações não linearespt_PT
dc.subjectOptimisationpt_PT
dc.subjectParticle swarm optimisationpt_PT
dc.subjectArtificial neural networkspt_PT
dc.subjectRootspt_PT
dc.subjectPolynomialspt_PT
dc.subjectNon-linear equationspt_PT
dc.subjectMathematics, Statistics and Applicationspt_PT
dc.subject.pt_PT
dc.subjectFaculdade de Ciências Exatas e da Engenhariapt_PT
dc.titleNature-inspired algorithms for solving some hard numerical problemspt_PT
dc.typemaster thesis
dspace.entity.typePublication
oaire.awardTitleLaboratory of Robotics and Engineering Systems
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50009%2F2020/PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameTeixeira Freitas
person.givenNameDiogo Nuno
person.identifieryfy16oUAAAAJ
person.identifier.ciencia-id9C13-AF9C-25F3
person.identifier.orcid0000-0002-2351-8676
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typemasterThesispt_PT
relation.isAuthorOfPublicationb71e6dc9-523a-4300-92c3-4c459023a98c
relation.isAuthorOfPublication.latestForDiscoveryb71e6dc9-523a-4300-92c3-4c459023a98c
relation.isProjectOfPublicationc0352e81-99e6-4923-99ed-074df09e4db0
relation.isProjectOfPublication.latestForDiscoveryc0352e81-99e6-4923-99ed-074df09e4db0
thesis.degree.nameMaster in Mathematics, Statistics and Applicationspt_PT

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DissertaçãoDiogoFreitas.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format