Publication
Finding the optimal time window for increased classification accuracy during motor imagery
dc.contributor.author | Blanco-Mora, D. A. | |
dc.contributor.author | Aldridge, A. | |
dc.contributor.author | Jorge, C. | |
dc.contributor.author | Vourvopoulos, A. | |
dc.contributor.author | Figueiredo, P. | |
dc.contributor.author | Bermúdez i Badia, S. | |
dc.date.accessioned | 2022-07-21T15:31:30Z | |
dc.date.available | 2022-07-21T15:31:30Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Motor imagery classification using electroencephalography is based on feature extraction over a length of time, and different configurations of settings can alter the performance of a classifier. Nevertheless, there is a lack of standardized settings for motor imagery classification. This work analyzes the effect of age on motor imagery training performance for two common spatial pattern-based classifier pipelines and various configurations of timing parameters, such as epochs, windows, and offsets. Results showed significant (p ≤ 0.01) inverse correlations between performance and feature quantity, as well as between performance and epoch/window ratio. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Blanco-Mora, D. A., Aldridge, A., Vieira, C. J., Vourvopoulos, A., Figueiredo, P., & i Badia, S. B. (2021). Finding the optimal time window for increased classification accuracy during motor imagery. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, (pp. 144-151). | pt_PT |
dc.identifier.doi | 10.5220/0010316101440151 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.13/4448 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | SciTePreess | pt_PT |
dc.relation | Stroke Neurorehabilitation Augmented by Virtual Reality and EEG-neurofeedback: Neuroimaging-based Validation and Optimization | |
dc.relation | NOVA Laboratory for Computer Science and Informatics | |
dc.relation | Laboratory of Robotics and Engineering Systems | |
dc.relation | Not Available | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Brain-computer interface | pt_PT |
dc.subject | BCI | pt_PT |
dc.subject | Motor imagery | pt_PT |
dc.subject | MI | pt_PT |
dc.subject | Lassification accuracy | pt_PT |
dc.subject | Common spatial pattern | pt_PT |
dc.subject | CSP | pt_PT |
dc.subject | Electroencephalography | pt_PT |
dc.subject | EEG | pt_PT |
dc.subject | Neurorehabilitation | pt_PT |
dc.subject | Stroke | pt_PT |
dc.subject | . | pt_PT |
dc.subject | Faculdade de Ciências Exatas e da Engenharia | pt_PT |
dc.title | Finding the optimal time window for increased classification accuracy during motor imagery | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Stroke Neurorehabilitation Augmented by Virtual Reality and EEG-neurofeedback: Neuroimaging-based Validation and Optimization | |
oaire.awardTitle | NOVA Laboratory for Computer Science and Informatics | |
oaire.awardTitle | Laboratory of Robotics and Engineering Systems | |
oaire.awardTitle | Not Available | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FCCI-COM%2F31485%2F2017/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FCEC%2F04516%2F2019/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50009%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/CEEC IND 2018/CEECIND%2F01073%2F2018%2FCP1572%2FCT0013/PT | |
oaire.citation.endPage | 151 | pt_PT |
oaire.citation.startPage | 144 | pt_PT |
oaire.citation.title | Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies | pt_PT |
oaire.fundingStream | 3599-PPCDT | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | CEEC IND 2018 | |
person.familyName | Blanco Mora | |
person.familyName | Aldridge | |
person.familyName | Jorge | |
person.familyName | Vourvopoulos | |
person.familyName | Figueiredo | |
person.familyName | Bermúdez i Badia | |
person.givenName | Diego Andres | |
person.givenName | Audrey | |
person.givenName | Carolina | |
person.givenName | Athanasios | |
person.givenName | Patricia | |
person.givenName | Sergi | |
person.identifier | 279446 | |
person.identifier | 239789 | |
person.identifier.ciencia-id | 491D-BBB7-6979 | |
person.identifier.ciencia-id | 5813-A481-A9D3 | |
person.identifier.ciencia-id | 231D-806E-85DC | |
person.identifier.ciencia-id | CA17-5E88-2B37 | |
person.identifier.orcid | 0000-0003-2232-0999 | |
person.identifier.orcid | 0000-0003-3733-4736 | |
person.identifier.orcid | 0000-0002-7693-7292 | |
person.identifier.orcid | 0000-0001-9676-8599 | |
person.identifier.orcid | 0000-0002-0743-0869 | |
person.identifier.orcid | 0000-0003-4452-0414 | |
person.identifier.rid | C-7778-2018 | |
person.identifier.rid | F-3872-2017 | |
person.identifier.rid | A-1194-2013 | |
person.identifier.rid | C-8681-2018 | |
person.identifier.scopus-author-id | 48762198300 | |
person.identifier.scopus-author-id | 7003529050 | |
person.identifier.scopus-author-id | 6506360007 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | bfa9f4c8-7d88-4d07-9171-b62a5ce70e1d | |
relation.isAuthorOfPublication | 27690ebf-246d-4598-9358-2409a6f1cb8c | |
relation.isAuthorOfPublication | 84dd2d48-f1ea-45f2-9c9d-e50b5abef130 | |
relation.isAuthorOfPublication | 9f85dbdf-dbe3-46a4-b625-d5cc2cdcc83c | |
relation.isAuthorOfPublication | 96caf4a4-152d-4404-92f3-801fe3392250 | |
relation.isAuthorOfPublication | ef8f1e3b-3c09-4817-80d0-d96aa88051a2 | |
relation.isAuthorOfPublication.latestForDiscovery | 84dd2d48-f1ea-45f2-9c9d-e50b5abef130 | |
relation.isProjectOfPublication | 39adc127-cc63-4ac9-96dd-0b944952eddf | |
relation.isProjectOfPublication | 6ba2835f-91ea-405b-8134-949b529ceb42 | |
relation.isProjectOfPublication | c0352e81-99e6-4923-99ed-074df09e4db0 | |
relation.isProjectOfPublication | 72562c67-d766-4745-bcee-037c22216499 | |
relation.isProjectOfPublication.latestForDiscovery | 72562c67-d766-4745-bcee-037c22216499 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Finding the Optimal Time Window for Increased Classification Accuracy during Motor Imagery.pdf
- Size:
- 181.04 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: