Publication
Atmos: a hybrid crowdsourcing approach to weather estimation
dc.contributor.author | Niforatos, Evangelos | |
dc.contributor.author | Vourvopoulos, Athanasios | |
dc.contributor.author | Langheinrich, Marc | |
dc.contributor.author | Campos, Pedro | |
dc.contributor.author | Doria, Andre | |
dc.date.accessioned | 2022-09-19T10:05:17Z | |
dc.date.available | 2022-09-19T10:05:17Z | |
dc.date.issued | 2014 | |
dc.description.abstract | Motivated by the novel paradigm of participatory sensing in collecting in situ automated data and human input we introduce the Atmos platform. Atmos leverages a crowd-sourcing network of mobile devices for the collection of in situ weather related sensory data, provided by available on-board sensors, along with human input, to generate highly localized information about current and future weather conditions. In this paper, we share our first insights of an 8-month long deployment of Atmos mobile app on Google Play that gathered data from a total of 9 countries across 3 continents. Furthermore, we describe the underlying system infrastructure and showcase how a hybrid people-centric and environment-centric approach to weather estimation could benefit forecasting. Finally, we present our preliminary results originating from questionnaires inquiring into how people perceive the weather, how they use technology to know about the weather and how it affects their habits. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Niforatos, E., Vourvopoulos, A., Langheinrich, M., Campos, P., & Doria, A. (2014, September). Atmos: a hybrid crowdsourcing approach to weather estimation. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication (pp. 135-138). | pt_PT |
dc.identifier.doi | 10.1145/2638728.2638780 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.13/4623 | |
dc.language.iso | eng | pt_PT |
dc.publisher | ACM | pt_PT |
dc.relation | RECALL: Enhanced Human Memory | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
dc.subject | Sensor networks | pt_PT |
dc.subject | Smart cities | pt_PT |
dc.subject | Crowd sensing | pt_PT |
dc.subject | Mobile sensing | pt_PT |
dc.subject | . | pt_PT |
dc.subject | Faculdade de Ciências Exatas e da Engenharia | pt_PT |
dc.title | Atmos: a hybrid crowdsourcing approach to weather estimation | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | RECALL: Enhanced Human Memory | |
oaire.awardURI | info:eu-repo/grantAgreement/EC/FP7/612933/EU | |
oaire.citation.endPage | 138 | pt_PT |
oaire.citation.startPage | 135 | pt_PT |
oaire.citation.title | Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication | pt_PT |
oaire.fundingStream | FP7 | |
person.familyName | Vourvopoulos | |
person.familyName | Pereira Campos | |
person.givenName | Athanasios | |
person.givenName | Pedro Filipe | |
person.identifier | 279446 | |
person.identifier.ciencia-id | 5813-A481-A9D3 | |
person.identifier.ciencia-id | 7C19-B5E5-01CA | |
person.identifier.orcid | 0000-0001-9676-8599 | |
person.identifier.orcid | 0000-0001-7706-5038 | |
person.identifier.rid | F-3872-2017 | |
person.identifier.scopus-author-id | 48762198300 | |
project.funder.identifier | http://doi.org/10.13039/501100008530 | |
project.funder.name | European Commission | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 9f85dbdf-dbe3-46a4-b625-d5cc2cdcc83c | |
relation.isAuthorOfPublication | fb4a962b-b799-4ba2-8778-3d9d0a64b2b0 | |
relation.isAuthorOfPublication.latestForDiscovery | fb4a962b-b799-4ba2-8778-3d9d0a64b2b0 | |
relation.isProjectOfPublication | b80e5f3e-1418-448d-a799-1e37e31208c9 | |
relation.isProjectOfPublication.latestForDiscovery | b80e5f3e-1418-448d-a799-1e37e31208c9 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Atmos A hybrid crowdsourcing approach to weather estimation.pdf
- Size:
- 380.67 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: