Repository logo
 
Publication

Atmos: a hybrid crowdsourcing approach to weather estimation

dc.contributor.authorNiforatos, Evangelos
dc.contributor.authorVourvopoulos, Athanasios
dc.contributor.authorLangheinrich, Marc
dc.contributor.authorCampos, Pedro
dc.contributor.authorDoria, Andre
dc.date.accessioned2022-09-19T10:05:17Z
dc.date.available2022-09-19T10:05:17Z
dc.date.issued2014
dc.description.abstractMotivated by the novel paradigm of participatory sensing in collecting in situ automated data and human input we introduce the Atmos platform. Atmos leverages a crowd-sourcing network of mobile devices for the collection of in situ weather related sensory data, provided by available on-board sensors, along with human input, to generate highly localized information about current and future weather conditions. In this paper, we share our first insights of an 8-month long deployment of Atmos mobile app on Google Play that gathered data from a total of 9 countries across 3 continents. Furthermore, we describe the underlying system infrastructure and showcase how a hybrid people-centric and environment-centric approach to weather estimation could benefit forecasting. Finally, we present our preliminary results originating from questionnaires inquiring into how people perceive the weather, how they use technology to know about the weather and how it affects their habits.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationNiforatos, E., Vourvopoulos, A., Langheinrich, M., Campos, P., & Doria, A. (2014, September). Atmos: a hybrid crowdsourcing approach to weather estimation. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication (pp. 135-138).pt_PT
dc.identifier.doi10.1145/2638728.2638780pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.13/4623
dc.language.isoengpt_PT
dc.publisherACMpt_PT
dc.relationRECALL: Enhanced Human Memory
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectSensor networkspt_PT
dc.subjectSmart citiespt_PT
dc.subjectCrowd sensingpt_PT
dc.subjectMobile sensingpt_PT
dc.subject.pt_PT
dc.subjectFaculdade de Ciências Exatas e da Engenhariapt_PT
dc.titleAtmos: a hybrid crowdsourcing approach to weather estimationpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleRECALL: Enhanced Human Memory
oaire.awardURIinfo:eu-repo/grantAgreement/EC/FP7/612933/EU
oaire.citation.endPage138pt_PT
oaire.citation.startPage135pt_PT
oaire.citation.titleProceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publicationpt_PT
oaire.fundingStreamFP7
person.familyNameVourvopoulos
person.familyNamePereira Campos
person.givenNameAthanasios
person.givenNamePedro Filipe
person.identifier279446
person.identifier.ciencia-id5813-A481-A9D3
person.identifier.ciencia-id7C19-B5E5-01CA
person.identifier.orcid0000-0001-9676-8599
person.identifier.orcid0000-0001-7706-5038
person.identifier.ridF-3872-2017
person.identifier.scopus-author-id48762198300
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication9f85dbdf-dbe3-46a4-b625-d5cc2cdcc83c
relation.isAuthorOfPublicationfb4a962b-b799-4ba2-8778-3d9d0a64b2b0
relation.isAuthorOfPublication.latestForDiscoveryfb4a962b-b799-4ba2-8778-3d9d0a64b2b0
relation.isProjectOfPublicationb80e5f3e-1418-448d-a799-1e37e31208c9
relation.isProjectOfPublication.latestForDiscoveryb80e5f3e-1418-448d-a799-1e37e31208c9

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Atmos A hybrid crowdsourcing approach to weather estimation.pdf
Size:
380.67 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: