Repository logo
 
Loading...
Thumbnail Image
Publication

Automatic Detection of a Phases for CAP Classification

Use this identifier to reference this record.

Advisor(s)

Abstract(s)

The aim of this study is to develop an automatic detector of the cyclic alternating pattern by first detecting the activation phases (A phases) of this pattern, analysing the electroencephalogram during sleep, and then applying a finite state machine to implement the final classification. A public database was used to test the algorithms and a total of eleven features were analysed. Sequential feature selection was employed to select the most relevant features and a post processing procedure was used for further improvement of the classification. The classification of the A phases was produced using linear discriminant analysis and the average accuracy, sensitivity and specificity was, respectively, 75%, 78% and 74%. The cyclic alternating pattern detection accuracy was 75%. When comparing with the state of the art, the proposed method achieved the highest sensitivity but a lower accuracy since the fallowed approach was to keep the REM periods, contrary to the method that is used in the majority of the state of the art publications which leads to an increase in the overall performance. However, the approach of this work is more suitable for automatic system implementation since no alteration of the EEG data is needed.

Description

Keywords

A phase Cyclic alternating pattern CAP LDA . Escola Superior de Tecnologias e Gestão Faculdade de Ciências Exatas e da Engenharia

Citation

Mendonça, F.; Fred, A.; Shanawaz Mostafa, S.; Morgado-Dias, F. and Ravelo-García, A. (2018). Automatic Detection of a Phases for CAP Classification. In Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods - ICPRAM; ISBN 978-989-758-276-9; ISSN 2184-4313, SciTePress, pages 394-400. DOI: 10.5220/0006595103940400

Organizational Units

Journal Issue