Loading...
5 results
Search Results
Now showing 1 - 5 of 5
- Influence of disturbance and nutrient enrichment on early successional fouling communities in an oligotrophic marine systemPublication . Canning-Clode, João; Kaufmann, Manfred; Molis, Markus; Wahl, Martin; Lenz, MarkDisturbance and productivity are often cited as the main factors determining temporal and spatial patterns in species distribution and the diversity of com munities. A field experiment was conducted to test the role of these factors in the structuring of early successional fouling communities in a nutrient limited system at the south coast of Madeira Island. Macro-benthic sessile communi ties, established on artificial settlement substrata, were manipulated and sur veyed over a 9-week period. We applied mechanical disturbances of four different frequencies crossed with three levels of inorganic nutrient enrichment. Fertilization enhanced community diversity by favouring the establishment and growth of macroalgae. Disturbance reduced diversity by eliminating species – but only at the highest nutrient level. This is explained by a multiple-stressor model; species most sensitive to nutrient deficiency (only present in the highest enrichment treatment) were simultaneously the most sensitive to disturbance.
- Shallow subtidal macroalgae in the North-eastern Atlantic archipelagos (Macaronesian region): a spatial approach to community structurePublication . Sangil, Carlos; Martins, Gustavo M.; Hernández, José Carlos; Alves, Filipe; Neto, Ana I.; Ribeiro, Cláudia; León-Cisneros, Karla; Canning-Clode, João; Rosas-Alquicira, Edgar; Mendoza, José Carlos; Titley, Ian; Wallenstein, Francisco; Couto, Ruben P.; Kaufmann, ManfredShallow subtidal macroalgal communities in the North-eastern Atlantic archipelagos (Azores, Madeira, Canaries and Cape Verde) were studied in order to identify their spatial organization patterns and the main drivers of change. Fifteen islands and 145 sites across 15º of latitude and 2850 km were sampled. We found high spatial variability across the scales considered (archipelago, island and site). The structure of macroalgal communities differed among archipelagos, except between Madeira and the Canaries, which were similar. Across a latitudinal gradient, macroalgal communities in the Azores were clearly separated from the other archipelagos; communities in Madeira and the Canaries occupied an intermediate position, while those in Cape Verde appeared at the opposite end of the gradient. In the Azores, species with warm-temperate affinities dominated commu nities. Cape Verde communities were, in contrast, dominated by tropical taxa, whereas in the subtropical Canaries and Madeira there was a mixture of species with colder and warmer affinities. Apart from crustose coralline algae, the Dictyotales were the group with greatest cover; larger and longer-lived species were progressively replaced by short-lived species along a latitudinal gradient from north to south. The perennial species Zonaria tournefortii dominated the sea-bottom in the Azores, the semi perennial Lophophora variegata in the Canaries, the filamentous algae in Madeira and the ephemeral Dictyota dichotoma in Cape Verde. We hypothesized that the differences among archipelagos could be explained by synergies between temperature and herbivory, which increased in diversity southwards, especially in Cape Verde. This was supported by the predominance of non crustose macroalgae in the Azores and of crustose macroalgae in Cape Verde, as would be predicted from the greater herbivore activity. At the scale of islands and sites, the same set of environmental variables drove differences in macroalgal community structure across all the Macaronesian archipelagos.
- The collapse of marine forests: drastic reduction in populations of the family Sargassaceae in Madeira Island (NE Atlantic)Publication . Bernal-Ibáñez, Alejandro; Gestoso, Ignacio; Wirtz, Peter; Kaufmann, Manfred; Serrão, Ester A.; Canning-Clode, João; Cacabelos, EvaSpecies of the genera Cystoseira, Ericaria, Gongolaria, and Sargassum (family Sargassaceae) are key components of the Mediterranean-Atlantic marine forests, essential for biodiversity and ecosystem functioning. Populations of these foundational species are particularly vulnerable to anthropogenic impacts, likely to be intensified under future scenarios of climate change. The decline and even disappearance of these species have been reported in different areas of the world. At Madeira Island (NE Atlantic), populations of Gongolaria abies-marina, Ericaria selaginoides, Sargassum vulgare, and Sargassum filipendula, the most ecologically relevant species in Macaronesian marine forests, have been suffering a drastic decline during the last decades, especially on the southern coast of the island, where anthropogenic pressure is higher than on the north coast. The lack of sufficient temporal coverage on qualitative and quantitative studies of Sargassaceae communities in Madeira poses a challenge to establish a specific period for this decline. Consulting qualitative studies and historical records, we have set for the first time a timeline that shows an evident decrease in Sargassaceae populations in the last 20 years on Madeira Island. Following this timeline, we pinpoint the start of this decline in the first decade of the 2000s. This can be particularly confirmed for places like Funchal and Reis Magos, with significantly higher historical records. Currently, most benthic communities on shallow subtidal rocky reefs along the south coast are dominated by sea urchins and crustose coralline algae, the so-called sea urchin barrens. However, in some cases, they are entirely covered by a layer of sediment. We discuss the possible factors contributing to these drastic changes, bringing Madeira’s marine forests to a dramatic decline. As many animal species rely on marine forests, the decline of Sargassaceae populations represents an invaluable ecological loss for the coastal ecosystem of the island.
- Local benthic assemblages in shallow rocky reefs find refuge in a marine protected area at Madeira IslandPublication . Alves, Filipe; Canning-Clode, João; Ribeiro, Cláudia; Gestoso, Ignacio; Kaufmann, ManfredThe patterns of variability in the composition and structure of benthic communities along two depth strata (5 and 10 m) and the presence of sea urchins in structuring the subtidal rocky reefs were quantified in a long-established coastal marine protected area (Garajau MPA) and in two size equivalent and contiguous impacted areas (one highly urbanized and other with high fishing pressure) at Madeira Island (northeast Atlantic). Results suggest i) the MPA could be acting as a refuge for local biodiversity, ii) communities from the highly fished area could be suffering an impoverishment of local biodiversity, and iii) communities from the highly urbanized area would be enriched by the establishment of opportunistic species. These findings support that the level of human-pressure likely plays an important role in the composition of benthic communities in this insular ecosystem, although this was more relevant at the shallower stratum where the key grazer Diadema africanum explained 65% of the variance of benthic assemblages. It is suggested that this MPA small dimension and proximity to human impacted areas are limiting the survival of predators of the D. africanum.
- Seasonal variation in microplastics and zooplankton abundances and characteristics: the ecological vulnerability of an oceanic island systemPublication . Sambolino, Annalisa; Herrera, Inma; Álvarez, Soledad; Rosa, Alexandra; Alves, Filipe; Canning-Clode, João; Cordeiro, Nereida; Dinis, Ana; Kaufmann, ManfredThe ingestion of microplastics (MPs - plastic particles <5 mm) by planktivorous organisms represents a signif icant threat to marine food webs. To investigate how seasonality might affect plastic intake in oceanic islands' ecosystems, relative abundances and composition of MPs and mesozooplankton samples collected off Madeira Island (NE Atlantic) between February 2019 and January 2020 were analysed. MPs were found in all samples, with fibres accounting for 89 % of the particles. MPs and zooplankton mean abundance was 0.262 items/m3 and 18.137 individuals/m3 , respectively. Their monthly variations follow the seasonal fluctuation of environmental parameters, such as currents, chlorophyll-a concentration, sea surface temperature and precipitation intensity. A higher MPs/zooplankton ratio was recorded in the warm season (May-Oct), reaching 0.068 items/individual when considering large-sized particles (1000–5000 μm). This is the first study to assess the seasonal variability of MPs in an oceanic island system providing essential information respecting its ecological impact in pelagic environments.