Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Automating senior fitness testing through gesture detection with depth sensorsPublication . Gonçalves, A. R.; Cameirão, M. S.; Bermúdez i Badia, S.; Gouveia, E. R.Sedentarism has a negative impact on health, life expectancy and quality of life, especially in older adults. The assessment of functional fitness helps evaluating the effects of ageing and sedentarism, and this assessment is typically done through validated battery tests such as the Senior Fitness Test (SFT). In this paper we present a computer-based system for assisting and automating SFT administration and scoring in the elderly population. Our system assesses lower body strength, agility and dynamic balance, and aerobic endurance making use of a depth sensor for body tracking and multiple gesture detectors for the evaluation of movement execution. The system was developed and trained with optimal data collected in laboratory conditions and its performance was evaluated in a real environment with 22 elderly end-users, and compared to traditional SFT administered by an expert. Results show a high accuracy of our system in identifying movement patterns (>95%) and consistency with the traditional fitness assessment method. Our results suggest that this technology is a viable low cost option to assist in the fitness assessment of elderly that could be deployed for at home use in the context of fitness programs.
- Measured and perceived physical responses in multidimensional fitness training through exergames in older adultsPublication . Munoz, J. E.; Gonçalves, A.; Gouveia, E. R.; Cameirão, M. S.; Bermúdez i Badia, S.Exergames have been used to increase physical activity levels to produce health benefits in older adults. However, only a small number of studies have quantified the physical activity levels produced by custom-made Exergames and their capacity to elicit recommended levels of exercise. This study investigates the effectiveness of custom-made Exergames, designed for multidimensional fitness training, in eliciting recommended levels of exercise. We rely on both objective (accelerometry) and subjective (perceived exertion) information collected in two different modalities of exercise, consisting of 40- minutes sessions: Exergaming and conventional training (Control). A between-subjects analysis was done involving two groups of active older adults (n=33). Participants in the Control Between condition performed physical activity in conventional group fitness training, while the intervention group used individualized Exergaming as training modality. In addition, a sub-group of the Exergaming participants also performed a conventional training session (Control-Within), which enabled a within-subjects comparison. Results show that participants spent significantly more time in moderate-to-vigorous intensities during Exergaming, interestingly, perceiving significantly lower exertion levels. The between-subjects analysis only presented statistically significant differences for the perceived exertion scale. This study helps to unveil the impact of custom-made Exergames in physical activity levels during training when compared to conventional training for the older adult population.
- A virtual reality bus ride as an ecologically valid assessment of balance: a feasibility studyPublication . Gonçalves, A.; Montoya, M. F.; Llorens, R.; Bermúdez i Badia, S.Balance disorders can have substantial adverse implications on the performance of daily activities and lead to an increased risk of falls, which often have severe negative consequences for older adults. Quantitative assessment through computer ized force plate-based posturography enables objective assessment of postural control but could not successfully represent specifc abilities required during daily activities. The use of virtual reality (VR) could improve the representative design of functional activities and increase the ecological validity of posturographic tests, which would enhance the transferability of results to the real world. In this work, we investigate the feasibility of a simulated bus ride experienced in a surround-screen VR system to assess balance with increased ecological validity. Participants were frst evaluated with a posturography test and then with the VR-based bus ride test, while the reactions of their centre of pressure were registered. Lastly, participants provided self-reported measures of the elicited sense of presence during the test. A total of 16 healthy young adults completed the study. Results showed that the simulation could elicit signifcant medial–lateral excursions of the centre of pressure in response to variations in the optical fow. Furthermore, these responses’ amplitude negatively correlated with the participants’ posturography excursions when fxating a target. Although the sense of presence was moderate, likely due to the passive nature of the test, the results support the feasibility of our proposed paradigm, based in the context of a meaningful daily living activity, in assessing balance control components.