Loading...
78 results
Search Results
Now showing 1 - 10 of 78
- Chemical composition, fatty acids profile and cholesterol content of commercialized marine fishes captured in Northeastern AtlanticPublication . Nogueira, Natacha; Cordeiro, Nereida; Aveiro, Maria JoãoInformation available on the chemical composition and nutritional value of commercialized marine fish is very limited. The aim of this study was to investigate major nutrients of raw fish muscle and liver. Protein, moisture ash and lipid content were estimated for 14 commercialized species captured in Northeastern Atlantic. Proximate compositions were found to be varied among the studied species. Cluster analysis revealed two major groups based on proximate composition. Pontinus kuhlii and Trachurus picturatus formed one group, while the second group was formed by ten other species. Protein content was high in all species, varying between 18.51% in Phycis phycis and 32.69 % in Diplodus sargus. Fat content, on the other hand, was low and fish could be considered lean (lipid content <4%). Muscle fatty acid compositions consisted of 26.2-35.8% saturated fatty acids (SFA), 10.5-37.6% monounsaturated fatty acids (MUFA) and 28.7-57.5% polyunsaturated fatty acids (PUFA). Fish livers presented lower amounts of PUFA’s than muscles, mainly due to a reduction of the docosahexaenoic acid (DHA) content. Cholesterol content in liver revealed significant differences, ranging from 0.05 ±0.01 mg/g in Scorpaena scrofa to 7.58 ±0.19 mg/g in Aphanopus carbo. In fish muscle, cholesterol was low and was not correlated with lipids, fatty acids or PUFA content of the muscle.
- Lipophilic phytochemicals from banana fruits of several Musa speciesPublication . Vilela, Carla; Santos, Sónia A. O.; Villaverde, Juan J.; Oliveira, Lúcia; Nunes, Alberto; Cordeiro, Nereida; Freire, Carmen S. R.; Silvestre, Armando J.D.The chemical composition of the lipophilic extract of ripe pulp of banana fruit from several banana cultivars belonging to the Musa acuminata and Musa balbisiana species (namely 'Chinese Cavendish', 'Giant Cavendish', 'Dwarf Red', 'Grand Nain', 'Eilon', 'Gruesa', 'Silver', 'Ricasa', 'Williams' and 'Zelig') was studied by gas chromatography-mass spectrometry for the first time. The banana cultivars showed similar amounts of lipophilic extractives (ca. 0.4% of dry material weight) as well as qualitative chemical compositions. The major groups of compounds identified in these fractions were fatty acids and sterols making up 68.6-84.3% and 11.1-28.0%, respectively, of the total amount of lipophilic components. Smaller amounts of long chain aliphatic alcohols and α-tocopherol were also identified. These results are a relevant contribution for the valorisation of these banana cultivars as sources of valuable phytochemicals (ω-3 and ω-6 fatty acids, and sterols) with well-established beneficial nutritional and health effects.
- Comparative lipidomic analysis of Chlorella stigmatophora and Hemiselmis cf. andersenii in response to nitrogen-induced changesPublication . Fernandes, Tomásia; Ferreira, Artur; Cordeiro, NereidaThe current focus of algae biotechnology is the production of high-value lipids, and its improvement by employing abiotic perturbations such as nitrogen-induced changes. In the present study, the growth dynamics, nitrogen uptake, pigments, and lipid composition of Chlorellla stigmatophora and Hemiselmis cf. andersenii were studied, in response to low (LN), medium (MN) and high (HN) nitrogen supplementations. Both microalgae responded to increased nitrogen levels by increasing their nitrogen uptake rate and pigment content. However, for lipid accumulation, C. stigmatophora presented a different pattern (LN: 16.56% > MN: 11.51% > HN: 10.95%) to that of H. cf. andersenii (MN: 15.37% > HN: 13.06% > LN: 6.71%). Untargeted gas chromatography–mass spectrometry analysis allowed the visualization of the biochemical diversity of C. stigmatophora and H. cf. andersenii, as well as differences in lipid regulation upon nitrogen-induced changes among species. For instance, glycosyl sterols were only detected for C. stigmatophora samples grown under MN and HN conditions. Moreover, lipid analysis of H. cf. andersenii, before and after alkaline hydrolysis, suggests that wax esters play a key role in the response of this microalga to high nitrogen levels. The cultivation of H. cf. andersenii at MN and HN was shown to be ideal for providing a rich source of ω3 and polyunsaturated fatty acids for nutraceutical purposes. The hierarchical cluster analysis showed the differential intra- and interspecific effects of nitrogen on lipid composition. The diverse ways by which both microalgae responded to nitrogen-induced changes highlighted the influence of phylogeny on the carbon flux through metabolic networks, and accumulation.
- Microalgal-based industry vs. microplastic pollution: Current knowledge and future perspectivesPublication . Mendonça, Ivana; Faria, Marisa; Rodrigues, Filipa; Cordeiro, NereidaMicroalgae can play a crucial role in the environment due to their efficient capture of CO2 and their potential as a solution for a carbon-negative economy. Water quality is critical for the success and profitability of microalgal based industries, and understanding their response to emergent pollutants, such as microplastics (MPs), is essential. Despite the published studies investigating the impact of MPs on microalgae, knowledge in this area remains limited. Most studies have mainly focused on microalgal growth, metabolite analysis, and photosyn thetic activity, with significant discrepancies in what is known about the impact on biomass yield. Recent studies show that the yield of biomass production depends on the levels of water contamination by MPs, making it necessary to reduce the contamination levels in the water. However, present technologies for extracting and purifying water from MPs are limited, and further research and technological advancements are required. One promising solution is the use of bio-based polymer materials, such as bacterial cellulose, which offer biode gradability, cost-effectiveness, and environmentally friendly detoxifying properties. This review summarises the current knowledge on MPs pollution and its impact on the viability and proliferation of microalgae-based industries, highlights the need for further research, and discusses the potential of bio-solutions for MPs removal in microalgae-based industries.
- Nutritional value and fatty acid profile of two wild edible limpets from the Madeira ArchipelagoPublication . Fernandes, Igor; Fernandes, Tomásia; Cordeiro, NereidaPatella aspera and Patella candei are two abundant limpet species commercially exploited and often used as a delicacy in the Madeira Archipelago, but there is a lack of scientific knowledge about these species. This study investigated the nutritional value and fatty acids of this species across the coast of Madeira Archipelago. The lipid content (7.71–12.60% dw), proteins (48.22–64.09% dw), ashes (11.12–23.12% dw) and carbohydrates (4.5–10.9% dw) were determined in P. aspera and P. candei at different collection sites. In the fatty acid composition, a total of 23 fatty acids (FAs) were identified. P. aspera showed the highest amount of monounsaturated FAs (MUFAs, 35.02%) and eicosapentaenoic acid (EPA, 12.59%), and P. candei presented the highest level of oleic acid (OA, 28.25%), polyunsaturated FAs (PUFAs, 27.26%) and arachidonic acid (AA, 11.38%). The Σω3/Σω6 dietary ratio presented levels>0.25 suggesting that these marine molluscs are a good source of ω3 for dietary intake. Within each specie significant differences (p<0.05) across sites were observed. High amounts of essential nutrients were shown in Patella species collected at Selvagens site while poorest levels were shown in Patella collected at Lido. The evaluation of the nutritional traits of P. candei and P. aspera shows that these limpets are good sources of essential fatty acids for human health and that the distribution of limpets is a key factor when determining its dietary value.
- Profiling of lipophilic and phenolic phytochemicals of four cultivars from cherimoya (Annona cherimola Mill.)Publication . Santos, Sónia A. O.; Vilela, Carla; Camacho, João F.; Cordeiro, Nereida; Gouveia, Manuela; Freire, Carmen S. R.; Silvestre, Armando J.D.The lipophilic and phenolic extractives of the ripe mesocarp of four cherimoya cultivars ('Perry Vidal', 'Mateus I', 'Mateus III' and 'Funchal') from Madeira Island, were studied for the first time. The predominant lipophilic compounds are kaurene diterpenes (42.2-59.6%), fatty acids (18.0-35.6%) and sterols (9.6-23.7%). Kaur-16-en-19-oic acid is the major lipophilic component of all cultivars accounting between 554 and 1350mgkg(-1) of dry material. The studied fruits also contain a high variety of flavan-3-ols, including galloylated and non-galloylated compounds. Five phenolic compounds were identified for the first time: catechin, (epi)catechin-(epi)gallocatechin, (epi)gallocatechin, (epi)afzelechin-(epi)catechin and procyanidin tetramer. 'Mateus I' and 'Mateus III' cultivars present the highest content of phenolic compounds (6299 and 9603mgkg(-1) of dry weight, respectively). These results support the use of this fruit as a rich source of health-promoting components, with the capacity to prevent or delay the progress of oxidative-stress related disorders.
- Surface properties of suberinPublication . Cordeiro, Nereida; Aurenty, Patrice; Belgacem, Mohamed Naceur; Gandini, Alessandro; Neto, Carlos PascoalThe surface energy of suberin was determined by four different methods, namely, (i) contact angle measurements, (ii) Wilhelmy plate measurements, (iii) maximum bubble pressure, and (iv) inverse gas chromatography (IGC). The first three methods gave a gammasub value in the range 40-50 mN m-1 at room temperature. The major component of this value reflects the dispersive contribution. The IGC measurements showed a higher dispersive term, which is common with this method of characterization. The surface acid (A)/base (B) properties were also evaluated, and the results indicated that suberin has an acidic character.
- Effects of phosphorus-induced changes on the growth, nitrogen uptake, and biochemical composition of Pavlova pinguis and Hemiselmis cf. anderseniiPublication . Fernandes, Tomásia; Cordeiro, NereidaThe understanding of the phosphorus-induced changes in the biochemical composition of microalgae is of great importance for achieving efciency in high-value lipid production. To study the chemoplasticity of Pavlova pinguis (Haptophyceae) and Hemiselmis cf. andersenii (Cryptophyceae), their growth, carotenoid and chlorophyll a content, and their monosaccharide and lipid profles were analyzed against several phosphorus (P) regimes: low (LP), medium (MP), and high (HP). For both microalgal cultures, increasing initial P concentrations showed a positive efect on biomass productivities. Carbon-rich pools presented signifcant diferences (p<0.05) for P. pinguis against P treatments, in contrast to H. cf. andersenii. Diferential responses to P-induced changes in microalgae monosaccharide and lipid profle were observed. Hemiselmis cf. andersenii increased its proportion in galactose (up to 3 times) from LP to HP conditions, whereas P. pinguis decreased (up to 20%) its glucose proportion from LP to HP conditions. For P. pinguis, the lowest amount (13.12 mg g−1 dw) of sterols was observed at LP conditions, in contrast to its carotenoid content (4.32 mg g−1 dw). P-replete conditions were the most efective in induc ing high-value lipid accumulation. Non-targeted lipid analysis revealed which samples would need to be processed to fully exploit its high-value lipids, namely H. cf andersenii under MP and HP conditions. This study demonstrated that P played an important role in carbon allocation, nitrogen uptake, and lipid regulation on P. pinguis and H. cf. andersenii, and that P-replete conditions could be useful for optimizing high-value lipids with potential for nutraceutical and pharmaceutical felds.
- Structural characterization of lignin from leaf sheaths of “dwarf cavendish” banana plantPublication . Oliveira, Lúcia; Evtuguin, Dmitry V.; Cordeiro, Nereida; Silvestre, Armando J. D.; Silva, Artur M. S.; Torres, Isabel C.Dioxane lignin (DL) isolated from leaf sheaths of banana plant (Musa acuminata Colla var. cavendish) and in situ lignin were submitted to a comprehensive structural characterization employing spectroscopic (UV, FTIR, solid state 13C CP-MAS NMR, liquid state 13C and 1H NMR) and chemical degradation techniques (permanganate and nitrobenzene oxidation). Results obtained showed that banana plant leaf sheath lignin is of HGS type with a molar proportion of p-hydroxyphenyl (H)/guaiacyl (G)/syringyl (S) units of 12:25:63. Most of the H units in DL are terminal phenolic coumarates linked to other lignin substructures by benzyl and Cgamma-ester bonds in contrast to ferulates that are mainly ether linked to bulk lignin. It is proposed that banana plant leaf sheath lignin is chemically bonded to suberin-like components of cell tissues by ester linkages via essentially hydroxycinnamic acid residues. beta-O-4 structures (0.31/C6), the most abundant in DL, comprise mainly S units, whereas a significant proportion of G units is bonded by beta-5, 5-5', and 4-O-5' linkages contributing to ca. 80% of condensed structures in DL.
- Tissue engineering scaffold material with enhanced cell adhesion and angiogenesis from soy protein isolate loaded with bio modulated micro-TiO2 prepared via prolonged sonication for wound healing applicationsPublication . Koshy, Rekha Rose; Mary, Siji K.; Reghunadhan, Arunima; Dalvi, Yogesh Bharat; Kailas, Lekshmi; Cordeiro, Nereida; Thomas, Sabu; Pothen, Laly A.Tissue engineering is a technique that promotes healing by creating an ideal environment for endogenous cells to migrate and grow into the site of injury via a scaffold, improving regeneration and reducing the time required for in vitro cell culture. In this work, the effect of the addition of sonicated TiO2 in the soy protein isolate (SPI) matrix for tissue engineering applications was studied. In comparison to adding expensive nano TiO2, this method of incorporating sonicated TiO2 into the SPI matrix will aid in achieving improved properties at a lower cost. The effect of the addition of sonicated TiO2 on the morphological, UV transmittance, mechanical, thermal, surface energy, and hydrophilicity of SPI films was investigated. The result shows that the uniformly distributed TiO2 particles successfully blocked 95% of UV light. Scanning electron microscopy revealed a significant reduction in the TiO2 agglomerate size and homogeneous distribution of the same when sonication was applied instead of mechanical dispersion. A simultaneous increase of tensile strength (from 3.16 to 4.58 MPa) and elongation at break values (from 24.25% to 95.31%) with 0.5% TiO2 was observed. The addition of 0.25% TiO2 was found to significantly enhance the elongation at break value to 120.83%. Incorporation of micro-TiO2 particles could improve the surface roughness, surface energy, and wettability of SPI films. In vitro cell adhesion studies and in vivo subcutaneous implantation studies were performed to assess the cell growth and angiogenesis of the developed film membranes. An MTT assay showed that SPI-1%TiO2 film favored cell viability up to 118%, and in vivo subcutaneous implantation studies showed enhanced cell growth and angiogenesis for SPI-1% TiO2 films. This SPI-TiO2 film with enhanced surface properties can be used as an ideal candidate for tissue engineering applications.