Repository logo
 
Loading...
Project Logo
Research Project

Madeira Chemistry Research Centre

Authors

Publications

Morpholino-functionalized phosphorus dendrimers for precision regenerative medicine: osteogenic differentiation of mesenchymal stem cells
Publication . Li, Aijun; Fan, Yu; Cao, Xueyan; Chen, Liang; Wang, Le; Alves, Carla S.; Mignani, Serge; Majoral, Jean Pierre; Tomás, Helena; Shi, Xiangyang
A novel bioactive macromolecule based on morpholino-functiona lized phosphorus dendrimers (generation 2, G2-Mor+ ) was devel oped for osteogenic differentiation of mesenchymal stem cells (MSCs). Interestingly, through in vitro tests, it was shown that G2- Mor+ dendrimer can strongly promote the transformation of MSCs into osteoblasts, which implies the potential application of phos phorus de medicine.
Volatomic pattern of breast cancer and cancer-free tissues as a powerful strategy to identify potential biomarkers
Publication . Silva, Catarina; Perestrelo, Rosa; Silva, Pedro; Capelinha, Filipa; Tomás, Helena; Câmara, José S.
Breast cancer (BC), ranked as the fifth amongst all cancers, remains at the top of women’s cancers worldwide followed by colorectal, lung, cervix, and stomach cancers. The main handicap of most of the screening/diagnostic methods is based on their low sensitivity and specificity and the invasive behavior of most sampling procedures. The aim of this study was to establish the volatomic pattern of BC and cancer-free (CF) tissues (n = 30) from the same patients, as a powerful tool to identify a set of volatile organic metabolite (VOM) potential BC biomarkers which might be used together or complement with the traditional BC diagnostics strategies, through the integration of chromatographic data, obtained by solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME/GC-qMS), with chemometric tools. A total of four metabolites: limonene, decanoic acid, acetic acid and furfural presented the highest contribution towards discrimination of BC and CF tissues (VIP > 1, p < 0.05). The discrimination efficiency and accuracy of BC tissue metabolites was ascertained by ROC curve analysis that allowed the identification of some metabolites with high sensitivity and specificity. The results obtained with this approach suggest the possibility of identifying endogenous metabolites as a platform to find potential BC biomarkers and pave the way to investigate the related metabolomic pathways in order to improve BC diagnostic tools. Moreover, deeper investigations could unravel novel mechanistic insights into the disease pathophysiology.
Untargeted urinary 1H NMR-based metabolomic pattern as a potential platform in breast cancer detection
Publication . Silva, Catarina L.; Olival, Ana; Perestrelo, Rosa; Silva, Pedro; Tomás, Helena; Câmara, José S.
: Breast cancer (BC) remains the second leading cause of death among women worldwide. An emerging approach based on the identification of endogenous metabolites (EMs) and the establishment of the metabolomic fingerprint of biological fluids constitutes a new frontier in medical diagnostics and a promising strategy to differentiate cancer patients from healthy individuals. In this work we aimed to establish the urinary metabolomic patterns from 40 BC patients and 38 healthy controls (CTL) using proton nuclear magnetic resonance spectroscopy (1H-NMR) as a powerful approach to identify a set of BC-specific metabolites which might be employed in the diagnosis of BC. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied to a 1H-NMR processed data matrix. Metabolomic patterns distinguished BC from CTL urine samples, suggesting a unique metabolite profile for each investigated group. A total of 10 metabolites exhibited the highest contribution towards discriminating BC patients from healthy controls (variable importance in projection (VIP) >1, p < 0.05). The discrimination efficiency and accuracy of the urinary EMs were ascertained by receiver operating characteristic curve (ROC) analysis that allowed the identification of some metabolites with the highest sensitivities and specificities to discriminate BC patients from healthy controls (e.g. creatine, glycine, trimethylamine N-oxide, and serine). The metabolomic pathway analysis indicated several metabolism pathway disruptions, including amino acid and carbohydrate metabolisms, in BC patients, namely, glycine and butanoate metabolisms. The obtained results support the high throughput potential of NMR-based urinary metabolomics patterns in discriminating BC patients from CTL. Further investigations could unravel novel mechanistic insights into disease pathophysiology, monitor disease recurrence, and predict patient response towards therapy.
Prediction of terpenoid toxicity based on a quantitative structure–activity relationship model
Publication . Perestrelo, Rosa; Silva, Catarina; Fernandes, Miguel X.; Câmara, José S.
Terpenoids, including monoterpenoids (C10), norisoprenoids (C13), and sesquiterpenoids (C15), constitute a large group of plant-derived naturally occurring secondary metabolites with highly diverse chemical structures. A quantitative structure–activity relationship (QSAR) model to predict terpenoid toxicity and to evaluate the influence of their chemical structures was developed in this study by assessing in real time the toxicity of 27 terpenoid standards using the Gram-negative bioluminescent Vibrio fischeri. Under the test conditions, at a concentration of 1 µM, the terpenoids showed a toxicity level lower than 5%, with the exception of geraniol, citral, (S)-citronellal, geranic acid, (±)-α-terpinyl acetate, and geranyl acetone. Moreover, the standards tested displayed a toxicity level higher than 30% at concentrations of 50–100 µM, with the exception of (+)-valencene, eucalyptol, (+)-borneol, guaiazulene, β-caryophellene, and linalool oxide. Regarding the functional group, terpenoid toxicity was observed in the following order: alcohol > aldehyde ~ ketone > ester > hydrocarbons. The CODESSA software was employed to develop QSAR models based on the correlation of terpenoid toxicity and a pool of descriptors related to each chemical structure. The QSAR models, based on t-test values, showed that terpenoid toxicity was mainly attributed to geometric (e.g., asphericity) and electronic (e.g., maximum partial charge for a carbon (C) atom (Zefirov’s partial charge (PC)) descriptors. Statistically, the most significant overall correlation was the four-parameter equation with a training coefficient and test coefficient correlation higher than 0.810 and 0.535, respectively, and a square coefficient of cross-validation (Q2 ) higher than 0.689. According to the obtained data, the QSAR models are suitable and rapid tools to predict terpenoid toxicity in a diversity of food products.
An approach of the Madeira wine chemistry
Publication . Perestrelo, Rosa; Luís, Catarina; Gonçalves, Carolina; Castillo, Mariangie; Câmara, José S.
Madeira wine is a fortified Portuguese wine, which has a crucial impact on the Madeira Island economy. The particular properties of Madeira wine result from the unique and specific winemaking and ageing processes that promote the occurrence of chemical reactions among acids, sugars, alcohols, and polyphenols, which are important to the extraordinary quality of the wine. These chemical reactions contribute to the appearance of novel compounds and/or the transformation of others, consequently promoting changes in qualitative and quantitative volatile and non-volatile composition. The current review comprises an overview of Madeira wines related to volatile (e.g., terpenes, norisoprenoids, alcohols, esters, fatty acids) and non-volatile composition (e.g., polyphenols, organic acids, amino acids, biogenic amines, and metals). Moreover, types of aroma compounds, the contribution of volatile organic compounds (VOCs) to the overall Madeira wine aroma, the change of their content during the ageing process, as well as the establishment of the potential ageing markers will also be reviewed. The viability of several analytical methods (e.g., gas chromatography-mass spectrometry (GC-MS), two-dimensional gas chromatography and time-of-flight mass spectrometry (GC×GC-ToFMS)) combined with chemometrics tools (e.g., partial least squares regression (PLS-R), partial least squares discriminant analysis (PLS-DA) was investigated to establish potential ageing markers to guarantee the Madeira wine authenticity. Acetals, furanic compounds, and lactones are the chemical families most commonly related with the ageing process.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UID/QUI/00674/2019

ID